机器学习中难免遇到正负样本不平衡问题,处理办法通常有梁总,一:过采样,增加正样本数据;二:欠采样,减少负样本数据,缺点是会丢失一些重要信息。smote属于过采样。
代码
# from imblearn.over_sampling import BorderlineSMOTE
# from imblearn.over_sampling import SMOTENC
# from imblearn.over_sampling import SVMSMOTE
# from imblearn.over_sampling import KMeansSMOTE
# from imblearn.over_sampling import ADASYN
# from imblearn.over_sampling import RandomOverSampler
import pandas as pd
import numpy as np
from collections import Counter
from imblearn.over_sampling import SMOTE# 使用imlbearn库中上采样方法中的SMOTE接口
import matplotlib.pyplot as plt
# 生成一组0和1比例为9比1的样本,X为特征,y为对应的标签
x1=[np.random.randint(1,31) for i in range(90)]+[np.random.randint(50,81) for i in range(10)]
x2=[np.random.randint(1,31) for i in range(90)]+[np.random.randint(50
本文介绍了在机器学习中处理正负样本不平衡的方法,特别是使用SMOTE(Synthetic Minority Over-sampling Technique)进行过采样。通过示例代码展示了如何使用SMOTE平衡数据集,并展示了处理前后的样本分布情况。
最低0.47元/天 解锁文章
1299

被折叠的 条评论
为什么被折叠?



