中学计算机数制转换教案
计算中的数与信息编码课题教学要求知识目标能力目标情感目标教材分析重点难点教具 与设备教法教学过程
二进制
十六进制
0
0000
0
1
0001
1
2
0010
2
3
0011
3
4
0100
4
5
0101
5
6
0110
6
7
0111
7
8
1000
8
9
1001
9
10
1010
A
11
1011
B
12
1100
C
13
1101
D
14
1110
E
15
1111
F
计算机中数制的转换
十进制数转换成二进制数
将十进制数转换成二进制数,要将十进制数的整数部分和小数部分分开进行。将十进制的整数转换成二进制的整数,遵循“除二取余、逆序排列”的规则;将十进制小数转换成二进制小数,遵循“乘二取整、顺序排列”的规则;然后再将二进制整数和小数拼接起来,形成最终转换结果。
例如23.8125转换成二进制数如下:
( 23 ) 10=( ? ) 2
解: 2 │ 23
├────
2 │ 11 …… 余1(最低位)
└┬───
2 │ 5 …… 余1
├───
2 │ 2 …… 余1
├───
2 │ 1 …… 余0
└───
0 …… 余1(最高位)
即 ( 23 ) 10= ( 10111 ) 2
又如:( 0.8125 ) 10=( ? ) 2
解: 0.8125
× 2
1.6250 …… 整数部分1(最高位)
0.625
× 2
1.250 …… 整数部分1
0.25
× 2
0.50 …… 整数部分0
0.5
× 2
1.00 …… 整数部分1
终止计算
即 (0.8125)10=(0.1101)2
所以(23.87)10=(10111.1101)2
十进制数转换成十六进制数
将十进制数转换成十六进制数与转换成二进制数的方法相同,也要讲十进制数的整数部分与小数部分分开进行。将十进制数的整数部分转换成十六进制的整数,遵循“除16取余、逆序排列”的规则;将十进制数的小数部分转换成十六进制的小数,遵循“乘16取整,顺序排列”的规则;然后再将十六进制整数和小数拼接起来,形成最终转换结果。
二进制数与十六进制数的相互转换
十六进制数转换成二进制数。由于一位十六进制数正好对应4位二进制数,因此将十六进制数转换成二进制数,每一位十六进制分别展开转换成二进制数即可。
如:将(3CD)16转换成二进制数。
3 C D
0011 1100 1101
(3CD)16=0011 1100 1101=(1111001101)2
二进制数转换成十六进制数。将二进制数转换成十六进制数的方法,可以表述为:以二进制数的小数点为中心,向两端每4位组成一组(若高位端和地位端不够4位一组,则用0补足),然后没一组对应一个十六制数码,小数点位置对应不变。
如:将(10110101011.011101)2 转换成十六进制数。
0101 1010 1011 . 0111 0100
760

被折叠的 条评论
为什么被折叠?



