运筹学笔记

行列式

线性方程组:线形方程组是由多个变量组成的方程组。

如果有n个变量,且能找出n个变量组成的方程组,那么由方程组系数构成的矩阵,就成为了系数矩阵。

我们的目标是求解线形方程组。

根据克莱姆法则:

  • 如果系数矩阵计算值D不等于0,那么该线形方程组有唯一解;
  • 如果D为0,那么有无穷多解或者无解。

行列式的计算公式是由日本数学家江澤潔(Seki Takakazu)在17世纪中期发现的。江澤潔在研究代数方程时,发现了行列式的计算方法。他将行列式看作一个数值函数,能够将矩阵转化为一个数值。江澤潔在他的著作《大原算法》中描述了这种方法,并通过实例展示了如何用这种方法求解代数方程。

将线性方程组抽离成行列式,将行列式以行列式计算方法表达成值,然后根据行列式计算值求解行列式中的变量值。

求解线性方程组–克莱姆法则

已知线性方程组:
{ x 1 + x 2 = 5 3 x 1 + 4 x 2 = 9 \begin{cases} x_1 + x_2 = 5 \\ 3x_1 + 4x_2 = 9 \end{cases} {x1+x2=53x1+4x2=9

(1)判别有无唯一解;
(2)若有唯一解,则求唯一解。


解:(1)计算行列式
D = ∣ 1 2 3 4 ∣ = − 2 ≠ 0 D = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \ne 0 D= 1324 =2=0
所以此线形方程组有唯一解。


(2)计算行列式的解

D 1 = ∣ 5 2 9 4 ∣ = 2 D_1 = \begin{vmatrix} 5 & 2 \\ 9 & 4 \end{vmatrix} = 2 D1= 5924 =2

D 2 = ∣ 1 5 3 9 ∣ = − 6 D_2 = \begin{vmatrix} 1 & 5 \\ 3 & 9 \end{vmatrix} = -6 D2= 1359 =6

所以此线形方程组的唯一解是:
{ x 1 = D 1 D = − 1 x 2 = D 2 D = 3 \begin{cases} x_1 = \frac{D_1}{D} = -1 \\ x_2 = \frac{D_2}{D} = 3 \end{cases} {x1=DD1=1x2=DD2=3

求解线性方程组–逆矩阵

  • 将系数矩阵变换为逆矩阵;
  • 如果行列式的值不为0,则必有逆矩阵,且有唯一解,其实就是n个变量满足n个互斥方程必有唯一解;
  • 用逆矩阵左乘值矩阵,得出矩阵的唯一解向量。

线形相关

如果满足以下形式,则称向量组v1、v2…vn线形相关。
c 1 v 1 ⃗ + c 2 v 2 ⃗ + ⋯ + c n v n ⃗ = 0 ⃗ c_1 \vec{v_1} + c_2 \vec{v_2} + \cdots + c_n \vec{v_n} = \vec{0} c1v1 +c2v2 ++cnvn =0

线形相关表示向量组之间存在依赖关系,不是独立向量。

常数项(就是值向量)全为0的线形方程组叫做齐次线性方程组。

线形方程组的一般解法

线性方程组AX=B的一般解法:

  • 对增广矩阵作若干次初等行变换,化为阶梯形矩阵;
  • 使用行列式判断是否有解;
  • 若有解,再对增广矩阵继续作若干次初等行变换,化为简化阶梯形矩阵,从而得到此线性方程组的解

解线性方程组的原理是:
作初等行变换后,线形方程组的解不变。

除了通过克莱姆法则,用行列式判断矩阵有解,还可以通过矩阵的秩来判断,如果秩等于变量数,则有解。

齐次线性方程组

一般线性方程的表达式是AX=B,齐次线性方程组中常数项是0,即AX=0;

齐次线性方程组恒有解。

即至少有零解:如果秩r(A)<n,则有无穷多解,意味着除有零解外,还有非零解;如果秩r(A)=n,则有唯一解,

秩就是上三角矩阵中,不为0的行数。

线性规划

线性规划的要素包括:决策变量、约束条件、约束方程、目标方程。

线性规划的一般形式为:
m a x S = c 1 x 1 + c 2 x 2 + . . . + c n x n { a 11 x 1 + a 12 x 2 + . . . + a 1 n x n < b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n < b 2 . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n < b m x i ≥ 0 ,整数 maxS = c_1x_1 + c_2x_2 + ... + c_nx_n \\ \begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n < b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n < b_2 \\ ... \\ a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n < b_m \\ x_i \geq 0,整数 \end{cases} maxS=c1x1+c2x2+...+cnxn a11x1+a12x2+...+a1nxn<b1a21x1+a22x2+...+a2nxn<b2...am1x1+am2x2+...+amnxn<bmxi0,整数

在线性规划问题中,满足约束条件的解称为可行解,所有可行解的集合称为可行解集;
使得目标函数取值最大或最小的可行解称为最优解,对应于最优解的目标函数值称为最优值.
当然,解线性规划问题就是求得最优解与最优值.

线性规划所求问题一般是:效益(产生)最高或消耗(投入)最小。

线性规划解法–图解法

图解法适用于两个变量。

根据解约束,画出解空间,然后寻找解空间中的点到目标方程直线的最远距离,就是最优值。

线性规划解法–单纯形法

线性规划问题的标准形式具有三个特征:

  • 特征1 求目标函数的最大值;
  • 特征2 约束条件由变量满足线性方程组与要求变量皆非负两部分组成;
  • 特征3 变量所满足的线性方程组中,常数项皆非负.

单纯形法原理:
{ S = 1 − 2 x 1 − 3 x 2 x 1 ≥ 0 x 2 ≥ 0 \begin{cases} S = 1 - 2x_1 -3x_2 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{cases} S=12x13x2x10x20

观察以上方程,如果变量都是非负数,且系数都是负数,那么maxS就是变量都为0的时候,即maxS=1。

标准形式:
增广矩阵 + 目标检验式 = 单纯形矩阵

解线性规划问题,需要将线形规划问题化简为标准形式:

  • 若目标值是最小值,则取负求最大值,是minS转化为-maxS;
  • 若约束条件是>=或<=,添加松弛变量使方程转换为=;
  • 若常数项为负,取负,使方程的常数项为正。

动态规划

动态规划是将目标问题分解为各个子阶段,当前问题只和前一个问题有关,和其他问题无关,在求解任意子问题时,首先列出各种可能性的局部解,通过决策保留那些可能达到最优的局部解,丢弃其他局部解,依次解决各个子问题,最后得出初始问题的解。

动态规划和贪心算法的区别是,动态规划会保留历史的累计值,贪心算法只和当前决策中的最优值有关,和历史无关。

动态规划的思想实质是分治思想和解决冗余。

状态变量,
决策,
决策变量,
可行解,
解空间,左右可行解的集合,
最优解,
状态转移方程,
目标方程,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多弗朗强哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值