斐波那契数列c语言_斐波那契数列通项公式与黄金分割率

有一串数列:1、1、2、3、5、8、13、21、34、55、89、……。这个数列从第3项开始,每一项都等于前两项之和。这个数列被称作“斐波那契数列”(Fibonacci sequence),又称黄金分割数列。因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。

b459b330131c4d6e912afa3627afd7df.png

斐波那契在1202年出版的《计算书》中设计了一道有趣的算术题目,称作“兔子算术”,内容如下:有雌雄小兔子一对,小兔子长到2个月大后,如果每个月都会生下雌雄小兔子一对,请问:一年后总共会有多少对兔子呢?

斐波那契数列中的斐波那契数会经常出现在我们的眼前。比如:松果、凤梨、树叶的排列,某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e,黄金矩形、黄金分割、等角螺线,十二平均律等。

9bd5fa6618387509236ab916fe09cad6.png

有趣的是,这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当数列趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割率(约等于1.618)。比如:5÷3=1.666,21÷13=1.615,34÷21=1.619,……。越到后面,所得的结果与黄金分割率(φ)越来越接近。

下面,我们就来证明一下斐波那契数列的通项公式是如何得到的。

147e9d5bce1044801726f82433a813a1.png

由黄金分割率的定义可以推出:

5b1350be612e5cbb9a06ccbd9a03cf99.png

这个方程有两个解,其中一个是正解,即:φ=(1+√5)/2≈1:618。

对这个方程两边同时乘上φ,我们可以得到以下式子:

724dab655c7c889fa27d40c6f50caab5.png

假如用Fn表示斐波那契数列的第n项,则我们可以把上面的式子进一步变为:

d7118100bb108d15b894e8a60a40dc1c.png

于是,我们可以用数学归纳法证明推出:

422cd134b8c2d69ac2a161865ea9dd36.png

然后,我们把前面第一个方程的两个根分别代入这个式子,得到:

02bd10b2cc413bbf474baec39d199d94.png

两式相减可以得到:

970e644df28188c683e6f6f65126f2cc.png

因此,我们可以得到斐波那契数列的通项公式:

2d34bf23c1679b42f8b3b73221dbe27d.png

当n趋向于∞时,有

be7ae0fc2d23dd7aa739a7ea7fa02e00.png

这就证明了前文所提到的“当数列趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割率”。

我们还可以通过构建长方形的方法推出黄金分割率。如下图所示:

df0f1f7c2e49366440669dfd37d7fc49.png

根据斐波那契数列的特性,我们可以得到:

185fcb045e585ceb91fc0b0448fe26be.png

d939d5a05b43c261e2f858a8fcf73e86.png

于是推出:

4933d02cca1bf2d1b7792614a46826fc.png

即:

a8d29b4266266ec0a782df7beebe1403.png

最后,我们可以通过技巧得到下面的结果(证明过程略过):

5370e13bd4e2fd9075571e992064819a.png

这个式子还可以通过图形来表示:

b752d6e100f4f2a53d438032aa2d6af6.png

74fa09ded1b282f1280587c28e757699.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值