简单典型二阶系统_结构动力学中的时域分析(1) —— 单自由度系统

f975dc09d278c70451a952477beca1f3.png

引言

今天来聊聊结构动力学中的时域分析。

时域分析是结构动力学中的最直接,也是相对容易理解的一种分析类型,无论系统是线性的还是非线性的,稳态的还是非稳态的,确定的还是随机的,都可以进行时域分析。

7e772a788c0bb30a3bf64fe9171ce470.png

单自由度系统

考虑一个单自由度二阶系统:

17936df3dfa1bdb651d4725d7d505bca.png

叠加法

首先介绍一种基于叠加的方法,当看到“叠加”时,基本就可以认定该方法仅适用于线性问题。

考虑一个无阻尼单自由度系统在t0时刻受到单位大小的脉冲作用

1680a5e3702487e524eb802f6134dc98.png

其t时刻的响应为单位脉冲响应函数

2b7469389b1d558e4498b5bb46db25d7.png

当激励持续作用时,在τ时刻,可以看做系统受到 p(τ)dτ脉冲激励

505bd10a648664d9a60e0f0ff948e32d.png

因此,τ时刻的激励,对系统在t时刻响应的“贡献”为

7f01a4d31528ae8b69f7c3eb9b165199.png

对现行系统进行不同激励下的“ 叠加”,则响应为

ebb105ba05360485f99289dd6b6ef8a9.png

这就是著名的无阻尼系统Duhamel积分,它是一个卷积积分。关于卷积的特点,我们有机会在以后的文章中进行讨论。

考虑有阻尼时,只需要将单位激励脉冲函数稍作修改即可。

以上分析假设初始条件均为0,当考虑有初始位移和速度时,响应还需要加上初始条件对自由振动响应的影响。

解的形式已经给定,之后通过数值积分就可以得到系统不同时刻的响应。

叠加法可以很方便的从时域转到频域(即分别对输入和脉冲响应函数做傅立叶变换)

1b4cc13c4709d8311f530c5141dd23d0.png

其中,H为复频响应函数。

直接积分法

叠加法只能处理线性问题,而实际的问题绝大多数都是非线性的;因此,在实际的应用中,更多采用的是直接积分法;并且它还有其他诸多好处。

直接计分法将整个分析时间历程分为一系列时间间隔,或称为“时间步”,每个时间步的响应作为下个时间步的初始条件。分析过程中,所有参数均可随时间变化,适用于一般性的非线性问题。值得注意的是,积分时间步长由结构固有频率、载荷特征以及感兴趣的结果决定,如Newmark算法中的积分时间步长一般取

9ffffb1c282e50eee4a977076ed6ce22.png

其中,fm为感兴趣的最高频率

080a7cb1e50436b82429d3493fc0149e.png

事实上,在实际应用中,不管系统是否线性,大多采用直接积分法进行时域分析。总体而言,直接积分法可分为显示方法和隐式方法:

  • 显示方法:当前步分析的响应只与上一步(或几步)的响应有关,迭代方程可显示表达,直接求解;
  • 隐式方法:当前分析的响应不仅与上一步(或几步)的响应有关,还与当前步有关,迭代方程只能隐式表达,需要通过迭代求解;
  • 简单而言,显示方法的自变量和变量在迭代方程的两侧,可直接求解;隐式方法的自变量和变量“相互影响”,不能直接求解,需要迭代求解;如牛顿法和后退欧拉法等;

cc7d7c67db60a85a4208d092af29bc8d.png

此外:

  • 隐式方法可以转为显式方法;
  • 隐式方法需要迭代,时间步内存在收敛问题,在保证收敛的情况下,可适当增大时间步长;
  • 显式方法在时间步内不存在收敛问题,但时间步长需取得相对较小,否则解会不稳定或误差较大;
  • 通常显式方法需要更多的时间子步,但两者耗费计算资源的估计则需具体问题具体分析;
  • 在结构动力学的有限元分析中,对于线性或弱非线性问题,通常采用显式方法,典型算法有Newmark和HHT等。

算例

考虑一个单自由度MCK系统,在冲击载荷作用下,系统的脉冲响应为

a0f954f86d28fbe62f9b75f0594c2e33.gif

当系统受到持续载荷时,其载荷和响应为

f381faace9dea926ce402dc623df8a66.gif

最后

本文介绍了单自由度系统时域分析的方法,多自由度系统和分布式参数系统(连续体)将在下文介绍。

蒙特遇见卡罗:结构动力学中的时域分析(2) —— 多自由度系统​zhuanlan.zhihu.com
f2e7e6b428ec52fbe86f6bd4c02ea003.png
蒙特遇见卡罗:结构动力学中的时域分析(3) —— 基于ANSYS的实现​zhuanlan.zhihu.com
b0f6a84e5d4c5fd818ab78004ba59476.png

-完-

公众号同步更新:数联科技工作室

公众号内有更多内容!

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值