多元函数的向量表示_高等数学(微积分)8.6多元函数微分学的几何应用

8.6多元函数微分学的几何应用

1. 空间曲线的切线与法平面求法

设空间曲线的方程及其上的一点对应于则曲线在处的切线方程为:

切向量为:

法平面方程为:

2. 例题

1.求圆柱螺旋线在对应点处的切线方程和法平面方程.

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.2例题1

2.求曲线在处的切线和法平面方程.

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.3例题2

点击进入视频讲解

3. 曲面的切平面与法线求法

设曲面方程为其上的一点 则

切平面方程为:

法向量为:

法线方程为:

4.例题

1.求曲面在点处的切平面及法线方程.

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.5例题1

2.求曲面平行于平面的各切平面方程.

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.6例题2

3.如果平面与椭球面相切,求

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.7例题3

点击进入视频讲解

5. 特殊曲面方程对应的切平面与法线求法

若空间曲面方程形为其上的一点,则

切平面方程为:

法线方程为:

6.例题

1.求旋转抛物面在点处的切平面及法线方程.

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.9例题1

2.在曲面上求一点, 使该点处的法线垂直于平面并写出该法线方程.

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.10例题2

3.确定正数使曲面与球面在点相切.

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.11例题3

点击进入视频讲解

7. 曲线一般方程对应的切线与法平面求法

对于曲线其上的一点

切向量为:

切线方程为:

法平面方程为:

8. 例题

1.求曲线在点处的切线及法平面方程.

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.13例题1

2.求曲线在点的切线与法平面.

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.14例题2

点击进入视频讲解

9. 全微分的几何意义

在的全微分,表示曲面在点处的切平面上的点的竖坐标的增量.

例题答案

例2答案

1.所求切线方程为即,法平面方程为:.

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.2例题1

2.所求切线方程为:

法平面方程为:

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.3例题2

例4答案

1.所求切平面为法线方程为即

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.5例题1

2.所求切平面方程为和

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.6例题2

3.

课堂索引:8.6多元函数微分学的几何应用(1)
8.6.7例题3

点击进入视频讲解

例6答案

1.所求切平面方程为法线方程为

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.9例题1

2.该点坐标为法线方程为

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.10例题2

3.

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.11例题3

例8答案

1.所求切线方程为即法平面方程为

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.13例题1

2.所求切线方程为法平面方程为

课堂索引:8.6多元函数微分学的几何应用(2)
8.6.14例题2

点击进入第八章讲解

高等数学全册讲解

17b52374114538e75375792c349f9f23.png

学习讨论QQ群:869161567 08db8c03-c62c-eb11-8da9-e4434bdf6706.svg

课程地址:https://t.1yb.co/6xGH

11db8c03-c62c-eb11-8da9-e4434bdf6706.svg

ba0b52f926f23f7e7aec53ad19d0a976.gif

常见问题:为什么打开各个章节的视频讲解后,会显示“报名截止”?

答:本视频课程只支持打包购买,所以需要点击下方的链接全册购买,才能解锁各个章节的视频讲解。

高等数学全册讲解

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页