
在高考的导数题中,求参数的取值范围与分情况讨论一直是重难点,也是最让考生头痛的地方。但是,当这两个考点都不出现的时候,压轴题将会是什么样子?
在曾经高考单独命题的时代,辽宁省的命题一直是中规中矩,题型变化也相对不大。直到2014年(最后一次辽宁卷),出了一道非常奇怪的压轴题:
(2014·辽宁)
21.已知函数
证明
(1)存在唯一
(2)存在唯一
据说当年的考生们看到这道题后心理状态是这样的

对于接触过高等数学的同学而言,是不是很熟悉,有一种微分中值定理的气息?实际上,如果想套用微分中值定理的话,至少要提出两个零点,然而,函数
因此,解决这道题的核心不在于高层次知识的下放,而在于代数变形技巧的合理运用。
(1)问其实是让广大考生喜闻乐见的形式:零点存在性定理的应用。
首先,
接着证明唯一性。由于
接下来是令(sang)人(xin)开(bing)心(kuang)的第二问。
这里要介绍一个变形的技巧:如果对数函数前面含有自变量(特别是自变量恒为正数的时候),最好通过除法消去这部分自变量,从而达到简化运算的目的。
单独的描述比较抽象,我们来举例说明吧。例如函数
了解了这个原理之后,我们利用它来对
首先移项,
借助作图软件画出

显然x轴上左侧红线段代表
那么我们该如何验证它们之间的长度关系呢?很简单,将它们平移至同一起点便可以进行比较。又考虑到

将
求一次导数
桥豆麻袋,为啥感觉分母这么眼熟?是的,就是看似毫无关联的
由(1)中结论可知,当
又
证毕。
补一个小彩蛋吧。题中两个函数的图像可能是近几年高考压轴中最复杂的图像了


最后,归纳一下本题中体现的知识点吧。
1.零点存在性定理表明在某有界区间上至少存在一个零点,但零点具体个数不确定;要想证明零点唯一,便要证明该区间上函数单调性不变。
2.遇到对数函数的计算时,遵守“对数之前无变量”的原则作除法,这是一种简化运算的重要方法。
3.分析函数的图像时,可以进行平移、缩放、凹凸转换与对称,要灵活运用。

完
2020.3.9