mysql group by 查询慢_mysql定位和优化慢查询的方案

本文探讨了MySQL中数据结构的选择,如B+树的优势,以及如何利用索引来提升查询性能。介绍了主键索引、二级索引、联合索引和聚簇索引的概念。还讲解了如何通过explain分析查询计划,优化SQL,避免全表扫描,减少filesort,以及优化分页和排序策略。最后提出了联表查询和count函数的注意事项。
摘要由CSDN通过智能技术生成

是否遇到过这样的场景:因为一条sql查询耗时太长,降低用户体验;或者面对sql结合业务,不知道怎么写才能更高效地输出结果?今天帝都的雁为大家分享一下如何在千万级的数据量下输出高效的sql语句。

(PS:需要有mysql执行流程原理的理论基础,可参考我的另一篇博文《mysql查询和修改的底层原理》)

一、数据结构

Mysql之所以可以快速地吞吐,很大程度上依赖于其底层的数据结构--B+树。

首先我们先了解一下几种索引可选择的数据结构。

1、Hash

数据按照hash算法进行散列分布,通过hash算法,可以快速定位到具体的数据存放地址。但由于其散列分布带来的致命缺陷(范围查询不友好),实际开发中,很少有表使用这种索引。

329fea237fdf2df82dc2381c7ce0ecfa.png

2、二叉树

二叉树存放数据时,需要先指定根节点,然后进行比值,将索引值存放在左子树(比父节点小)或右子树(比父节点大)上。二叉树缺点很明显,如果根节点固定的话,那么数据很有可能失去平衡。比如自增ID如果按照二叉树去存放索引,那么本质上就是一条链表,时间复杂度也变为o(n)。

f3685e681091056111d1dbae24773874.png

3、平衡二叉树

在二叉树的基础上,增加了旋转功能来使整棵树达到平衡(左右子树高度差的绝对值不超过2)。HashMap8的数据结构红黑树也是一种特殊的平衡二叉树。这种数据结构看似可以维护平衡,但也仅仅是比链表好一点。由于其每个节点只能存放一个索引值,在数据量庞大的情况下,树的高度将会是一个无法直视的数字。想要找到树底层的数据,可能要进行的时间复杂度为o(log(n)),而且每次查找都是一次磁盘的IO,这种频繁IO必然牺牲性能。

72fbfb6c3d373dd07439211cb7967cf4.png

4、B树

为了解决降低树的高度,B树开始支持单个节点存放多个索引值(16KB)。这样一来,树的高度就会几何式降低。B树的缺点在于,节点上不仅存放索引值,也同时存放着索引对应的数据(或者数据的地址,这要依照于索引是否是聚簇索引)。试想,如果索引对应的数据比较大,那么单个节点存放的索引个数就会变小,使得树的高度,不再那么理想化。而且InnoDB存储引擎以页的方式对数据IO,也就是说,一次IO会把这一个节点上的数据都加载出来,可是实际需要的可能只是其中几个索引值,那么其他的索引值对应的数据也加载到内存,是不是增加了内存的消耗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值