python iloc函数_Python pandas.DataFrame.iloc函数方法的使用

DataFrame.iloc

纯粹基于整数位置的索引,用于按位置选择。

.iloc[] 主要是基于整数位置(从轴的0到长度-1),但也可以与布尔数组一起使用。

允许的输入:整数, 例如, 5

整数的列表或数组, 例如, [4, 3, 0]

带有整数的切片对象, 例如, 1:7

布尔数组

具有一个参数(调用Series,DataFrame或Panel)的可调用函数,它返回索引的有效输出(上述之一)。 当您没有对调用对象的引用但希望将选择基于某个值时,这在方法链中很有用。

.iloc 如果请求的索引器超出范围,将引发IndexError,除了允许越界索引的切片索引器(这符合python / numpy切片语义)。

请参阅ref:按位置选择

例子,>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},

... {'a': 100, 'b': 200, 'c': 300, 'd': 400},

... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]

>>> df = pd.DataFrame(mydict)

>>> df

a b c d

0 1 2 3 4

1 100 200 300 400

2 1000 2000 3000 4000

1)仅对行进行索引

带标量整数>>> type(df.iloc[0])

>>> df.iloc[0]

a 1

b 2

c 3

d 4

Name: 0, dtype: int64

带有整数列表>>> df.iloc[[0]]

a b c d

0 1 2 3 4

>>> type(df.iloc[[0]])

>>> df.iloc[[0, 1]]

a b c d

0 1 2 3 4

1 100 200 300 400

使用切片对象>>> df.iloc[:3]

a b c d

0 1 2 3 4

1 100 200 300 400

2 1000 2000 3000 4000

布尔掩码的长度与索引的长度相同

>>> df.iloc[[True, False, True]]

a b c d

0 1 2 3 4

2 1000 2000 3000 4000

选择索引为偶数的行>>> df.iloc[lambda x: x.index % 2 == 0]

a b c d

0 1 2 3 4

2 1000 2000 3000 4000

2)索引两个轴

您可以混合索引和列的索引器类型。 使用:选择整个轴

用标量整数>>> df.iloc[0, 1]

2

带有整数列表>>> df.iloc[[0, 2], [1, 3]]

b d

0 2 4

2 2000 4000

使用切片对象>>> df.iloc[1:3, 0:3]

a b c

1 100 200 300

2 1000 2000 3000

使用长度与列匹配的布尔数组>>> df.iloc[:, [True, False, True, False]]

a c

0 1 3

1 100 300

2 1000 3000

Series的可调用函数或DataFrame>>> df.iloc[:, lambda df: [0, 2]]

a c

0 1 3

1 100 300

2 1000 3000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值