css3 三角形_用尺规作直线同时平分三角形面积和周长

1、用尺规作出一条直线,使其同时平分一个三角形的面积和周长。

997030ec-4c1f-eb11-8da9-e4434bdf6706.png

这是一个引人入胜的经典问题。很多人都研究过她。例如顾森在文[1]中探讨过相关问题,不过尺规作图的过程不是很常见。即使有过程,基本也没有作图的思考过程。让读者感觉丈二和尚——摸不着头脑。本篇文章想展示一下本人对此题的思考和探索过程。

9c7030ec-4c1f-eb11-8da9-e4434bdf6706.gif

我对这个问题印象也非常深刻,因为这是我1996年参加的初中数学联赛中的选择题第5题即和此问题有关,题目为:

2、如果一条直线同时平分一个三角形的面积和周长,则此直线一定通过此三角形的___。

A 内心    B外心     C重心      D垂心

当时一卷中只有此题我答案不确定,最后因为时间关系我随意选了C,考完试我突然醒悟,正确答案是A,证明并不太困难。

9f7030ec-4c1f-eb11-8da9-e4434bdf6706.png

因为如果一条直线JK通过内心I且平分△ABC周长,

即AJ+AK=BJ+BC+CK.

则连接AI,BI,CI,

我们知道内心到三边距离相等均为r,

为了方便,我们用[ABC]表示△ABC面积,其他类似。

这样我们得到

[AJK]=[AJI]+[AKI]=0.5r(AJ+AK),

[BJKC]=[BJI]+[BIC]+[CIK]=0.5r(BJ+BC+CK),

从而[AJK]=[BJKC],

即JK平分△ABC面积。

这就基本上证明了此结论。

a17030ec-4c1f-eb11-8da9-e4434bdf6706.gif a17030ec-4c1f-eb11-8da9-e4434bdf6706.gif

但是这个证明答非所问,文不对题,

因为它只是证明了如果一条直线通过三角形内心且平分三角形周长,则平分其面积。

当然类似可证如果一条直线通过三角形内心且平分三角形面积,则平分其周长。

我们需要证明的是如果一条直线平分三角形面积,且平分其周长,则此直线通过三角形内心。

这个感觉更难一些,不过可以考虑如法炮制。相当于用同一法。

a47030ec-4c1f-eb11-8da9-e4434bdf6706.png

证明:设JK平分△ABC周长和面积,

即AJ+AK=BJ+BC+CK,[AJK]=[BJKC],

设角A内角平分线交JK于I,I到三边距离为r,r,x。

因为[AJK]=[BJKC],

即[AJI]+[AKI]=[BJI]+[BIC]+[CIK],

即0.5r(AJ+AK)=0.5r(BJ+CK)+0.5x*BC,

把AJ+AK=BJ+BC+CK代入上式得到

0.5r(BJ+BC+CK)=0.5r(BJ+CK)+0.5x*BC,

故x=r,

则I为△ABC内心,

即JK经过△ABC内心。

a57030ec-4c1f-eb11-8da9-e4434bdf6706.png

要用尺规作出JK,

下面希望得到一个关于AJ,AK的等式,

设△ABC边角为a,b,c;A,B,C。2p=a+b+c,

∠JAI=θ=0.5A,

AJ+AK=p,

则[AJI]+[AIK]=[AJK],

即AJ*AIsinθ+AK*AIsinθ=AJ*AKsin2θ,

则AJ*AK=p*AI/(2cosθ)为定值,

这样由两线段和与积即可作出他们。

最笨的作图方法是用求根公式,

比较巧妙的办法是用初版于1959年,被誉为中国的几何原本的书[2]中的方法,

利用韦达定理和切割线定理即可。

基本思路就是在AB直线上作出AG=AJ+AK=p,

在AC上作出AH=p,AN=AI/(2cosθ),

设AG,NH中垂线交于M,

以M为圆心MN为半径的圆交AB于O,J,

JI交AC于K,则JK即为所求。

9c7030ec-4c1f-eb11-8da9-e4434bdf6706.gif

这样就得到了如下作图方法:

a97030ec-4c1f-eb11-8da9-e4434bdf6706.png

尺规作图过程如下:

1、作△ABC内心I,

2、在AB、AC上作AG=AH=p,

3 、过I作AI垂线交AC于P,

4、作AP中点N,

5、作AG、NH中垂线交于M,

6、以M为圆心MN为半径画圆

交AB于J,O,

7、JI交线段AB于K。

则JK即为所求的一条直线。

这样算是得到了一种还算合理的作图方法,当然关键是得到的等式,熟悉几何的读者应该不陌生,因为这其实这就是张角定理的证明思路。

至此显然还没有结束,因为还有很多疑问。

首先的问题是这样的直线有几条?

是不是一定存在呢?

答案是肯定的。

如果代数上证明,要么用均值不等式要么用判别式,都不太困难。

如果从几何上看,过I的任意一条直线,不妨设直线上方的面积大,此直线绕着I旋转180°后,上下面积颠倒,下面的面积大了,因为旋转过程中面积是连续变化的,所以中间一定有一个时刻两边面积相等,从而这样的直线至少有一条。

那这样的直线会不会更多呢?

答案是有可能的,上述作法中圆与AB交点有两个J和O,JI满足。如果OI能和线段AC相交,由对称性则应该也满足,通过尝试可以发现,这样的直线最多有三条!如下图,就是满足条件的三条直线。

ab7030ec-4c1f-eb11-8da9-e4434bdf6706.png

要严格证明最多有三条,及什么条件下有一条、两条、三条,感觉还是比较困难的。

容易联想到本公众号前面一篇相关的文章[3],里面探讨了过一定点作直线平分三角形面积问题,而本题可以转化为过内心I作直线平分三角形面积,根据[3]里面的结果可知这样的直线最多有三条。

a17030ec-4c1f-eb11-8da9-e4434bdf6706.gif a17030ec-4c1f-eb11-8da9-e4434bdf6706.gif

相关问题基本解决。我又想到一个问题:上述的作图过程是按我的理解,先证明此直线过内心,然后得到AJ、AK等式,尺规作图得到的。如果不知道此直线过内心,能否用尺规作图作出此直线呢?

答案是肯定的。事实上,完全不需要引入三角形内心!

因为依题意,此直线平分面积和周长,就能得到AJ,AK的两个天然的等式,即

AJ+AK=p,

AJ*AK=0.5bc,

这样按照上面的思路,利用切割线定理,直接尺规作图即可。

从而上述作图过程可以改进如下:

af7030ec-4c1f-eb11-8da9-e4434bdf6706.png

1、在AB延长线上截取AE=p,在AC截取AF=AB,

2、作AC中点G,

3、作AE、GF中垂线交于M,

4、以M为圆心,MG为半径画圆交AB于J,O,AJ>AO,

5、在AB上截取AK=AO,

6、则JK即为所求的一条直线,

这样,此题作图过程就大大简化了,此题的难度也大大降低了,几乎是一个小学或者初中的几何问题了。

最后,对上述思考过程做一总结,刚开始我依据惯性思维,先入为主的以为作图必须要用过内心的条件。先证明此直线过三角形内心,又利用面积关系(本质是张角定理的证明),得到AJ,AK等量关系,最后利用韦达定理和切割线定理完成作图。

通过最后的反思改进,发现我绕了很大的弯路,完全不需要证明此直线过内心,也不需要利用面积关系。其实只需要最基本的条件,平分面积,平分周长,即可得到两个等式,利用韦达定理和切割线定理很轻松就能完成作图!

后来我在网上也找到一些作图方法,好像有很多[4],不过似乎都不够简洁明了。

b07030ec-4c1f-eb11-8da9-e4434bdf6706.jpeg

不过证明此直线过内心也不是完全没用的,毕竟这个结论对于探究此直线的存在条数有帮助,因为这样就转化为[3]中过一定点作直线平分三角形面积问题。也算是失之西隅,得之东墙吧^^

参考文献

1、 同时平分三角形的面积和周长的直线

http://www.matrix67.com/blog/archives/5313

2、《初等数学复习及研究(平面几何)》梁绍鸿  2008年 哈尔滨工业大学出版社

3、直线平分多边形面积问题

4 搜狗问答:怎样用一条直线将一个三角形的面积和周长同时平分?(尺规作图法)

https://www.sogou.com/link?url=DSOYnZeCC_rZXVZCtvPXjmRFzFBIhMTs0L1-c45Uka7fPWMK2bFMa63mlRzfPLR2

点我留言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值