木果读书会·行业探秘 NO.22
内容提要
从疾病检测、抽样调查、金融投资、到天气预报、生物遗传,甚至到抢红包、找对象、玩抽卡手游,概率已经深入我们生活的每个角落,但很多时候,我们凭借直觉做出的概率判断,都与结果相差很大。
本期木果读书会,数学爱好者乔柯通过5个生活中的概率问题,带你发现数学之美,看看靠直觉算出的概率有多么的不靠谱。
分享嘉宾
乔柯
(友情提示,下文含有大量烧脑、计算、逻辑判断等问题,请按大脑承受程度酌量服用
)
数学中好玩的问题实在是太多了,比如说“哥尼斯堡七桥问题”,也就是著名的一笔画问题,它促使了图论和几何拓扑的诞生;比如说“四色定理”——任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色,但它的证明用了两台计算机算了1200个小时,再比如说你一定听过的哥德巴赫猜想,陈景润攻克了“1+2”,这里的“1+2”可不是“=3”的意思哦。
上面这些问题看起来简单,讲起来就很难了。作为一个数学爱好者,我今天想讲点概率论。一来,概率论与我们的生活比较贴近。二来,人习惯于用确定的眼光看世界,如果你的火车票写着30%概率7点开车,70%概率8点开,你一定会抓狂的。
我们对于确定性的偏爱促使了我们对于终极真理的追求,但也让我们对很多现实中发生的不确定事件产生困惑,我们时常凭直觉推算概率,但这些直觉往往都是错的。
为了证明这一点,我们不妨来看几个在生活中也会遇到的概率问题。
三门问题
假设你去参加一个电视综艺节目。台上准备了三扇门。主持人告诉你,其中一扇门后藏有轿车,而另外两扇门后只有山羊,你可以选择一扇门,赢得门后的奖品。我们假设你更想要车而不是羊。
接下来,你做出了选择,我们假设你选了A门,主持人事先知道门后有什么,于是他从剩下的两扇门中打开了一扇后面是羊的门,我们假设他开的是B,最后一扇是C。
主持人关切的问你,我已经帮你去掉一个错误答案了,你是否要从A换成C呢?”
请大家在不百度的情况下考虑一下,做出自己的选择。
1.不换,依然选择A。因为换门也不会提高赢得轿车的概率。
2.换,选择C,赢得轿车的概率会提高。
“三门问题”也称“蒙提霍尔问题”,他的原型来自马丁·加德纳(Martin Gardner)在1959年的《数学游戏》专栏中提出的“三囚犯问题”。两个问题虽然描述上差得很远,但实质是一样的。
1990年,有人结合主持人蒙提霍尔的电视节目将之改编成如上形式寄给了《展示杂志》(Parade Magazine)的专栏作家玛丽莲·沃斯·莎凡特(Marilyn vos Savant)。这位玛丽莲来头也不小,10岁时智商就高达228,被吉尼斯世界纪录认定为拥有最高智商女性(2008年为止)。她在专栏里回答应该选择“换”。结果引起了轩然大波。
近万名读者写信表示反对,其中有博士头衔的有上千人,其中92%认为她错了。65%来自大学的信中,多数是来自数学和科学的院系,他们都反对她的答案,认为这只是女人的直觉,劝她修了概率课后再谈这问题。
反对者们认为,当主持人去掉一个错误的门后,羊和车分别在余下没打开的门中随机放置,每扇门

本文通过"三门问题"、"星期二男孩问题"等生活中的概率问题,揭示了直觉在面对概率时的不可靠性。例如,即使主持人在"三门问题"中揭示了一扇门后的奖品,换门仍然能提高赢得奖品的概率。同样,已知一个孩子是男孩的情况下,另一个也是男孩的概率并非50%,而是1/3。这些例子说明了概率论在日常生活中的应用和直觉偏差,提醒我们在做决策时需要更严谨的数学思考。
最低0.47元/天 解锁文章
7140

被折叠的 条评论
为什么被折叠?



