pandas 切片_Pandas 数据切割的三种逻辑

本文介绍了Pandas中数据切割的三种主要方法:df[],df.loc[:]和df.iloc[:]. df[]结合了行的下标和标签切片,但不支持单行选取;df.loc[:]基于标签索引,适用于行和列的多行多列切片;df.iloc[:]使用下标索引,适用于行和列的下标切片,遵循左闭右开原则。
摘要由CSDN通过智能技术生成

1f70aafd046789eaf23f56465a685f01.png
数据分析首要面临的问题就是数据的清洗和切割。
初学者在学习pandas的时候,经常会被pandas五花八门的数据切片和数据索引方式绕晕,造成混乱,从而影响代码编写的效率。
综合来讲,在数据的切片上,pandas为我们提供了三种不同的处理范式:df[]; df.loc[:]以及df.iloc[:]

1. df[]

df[]的表达方式也许是我们在pandas中最常用的切片方式,因为它最常用,最直接。

要想理解df[]的表达方式,首先我们得了解一下pandas DataFrame的构成。简单来说,DataFrame可以看成由Pandas Series 和列索引组成的字典型结构。而Pandas Series 可以看成是由 Ndarray 和行索引组成的字典型结构。

由此,df[]很好的继承了Ndarray的下标切片索引(行索引)和字典格式的标签索引(列索引)。

  • df[]行索引

df[]默认执行行的切片索引,同时支持下标和标签切片。

下标切片是左闭右开,但是标签的切片是全闭的,体现在对全部标签的选择

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值