实验四 函数的迭代混沌与分形.doc
实验四函数的迭代、混沌与分形实验目的1认识函数的迭代;2了解混沌和分形迭代在数值计算中占有很重要的地位,了解和掌握它是很有必要的本实验将讨论用NEWTON迭代求方程根的问题,以及迭代本身一些有趣的现象§1基本理论11迭代的概念给定某个初值,反复作用以同一个函数的过程称为迭代函数FX的迭代过程如下X0,X1FX0,X2FX1,,XNFXN1,它生成了一个序列{XN}迭代序列许多由递推关系给出的数列,都是递推序列例如数列X01,XN11/1XN1N1,2,是由函数FX11/1X2X/1X取初值为1所得的迭代序列12迭代序列的收敛性定理设函数FX满足1对任意XA,B,FXA,B2FX在A,B内可导,且存在常数L使得|FX |LX0执行结果见表41表41的结果说明迭代序列收敛于GX的零点17我们注意到程序中取的迭代处值为55,如果其它的数作为初值,所得的迭代序列是否收敛于17呢我们可以取其它初值做实验,结果得到表42表中第三列是迭代序列的前6位有效数字首次为170000的步数表42取不同初值的收敛情况初值收敛性收敛到17的步数初值收敛性收敛到17的步数40000收敛于17165收敛于519500收敛于171651收敛于171720收敛于17166收敛于17120收敛于171720收敛于17124收敛于1717100收敛于171449收敛于17191000收敛于1714从表42中可看出,只要初值不取5,迭代序列都收敛于17,且收敛速度与初值的选取关系不大前面程序中使用的FX为GX的化简过的NEWTON迭代函数,用MATHEMATICA命令可检查出它为25X85/X3注意,这个式子扩充了原迭代函数在X5,X17处的定义,解方程FXX得到X17,与X5即17和5是FX的两个不动点,有前面的讨论知这两个不动点是有区别的对于17,不管初值取为多少只要不为5,迭代序列总是收敛于它而对于5,只要初值取为5时,迭代序列才以它为极限,这样一种现象在函数的迭代中普遍存在,为方便区分起见,我们给这样两种点各一个名称像17这样的所有附近的点在迭代过程中都趋向于它的不动点,称为吸引点而像5这样的所有附近的点在迭代过程中都远离它的不动点,称为排斥点上面的FX25X85/X3是一个分式线性函数,对于一般的分式线性函数,迭代序列是否总是收敛呢练习1编程判断函数FXX1/X1的迭代序列是否收敛在上节我们已经指出,如果迭代序列收敛,一定收敛到函数的某个不动点,这就是说,迭代函数存在不动点是迭代序列收敛的必要条件那么如果迭代函数存在不动点,迭代序列是否一定收敛呢练习2先分别求出分式线性函数F1XX1/X3,F2XX15/X1的不动点,再编程判断它们的迭代序列是否收敛运用上节的收敛定理可以证明如果迭代函数在某不动点处具有连续的导数且导数值介于1与1之间,那么取该不动点附近的点为初值所得到的迭代序列一定收敛到该不动点练习3你能否说明为什么17是FX25X85/X3的吸引点,而5是FX的排斥点尽量多找些理由支持这个结论练习4能否找到一个分式线性函数AXB/CXD,使它产生的迭代序列收敛到给定的数用这种办法计算222迭代的”蜘蛛图”对函数的迭代过程,我们可以用几何图象来直观地显示它在XOY平面上,先作出函数YFX与YX的图象,对初值X0,在曲线YFX上可确定一点P0,它以X0为横坐标,过P0引平行X轴的直线,设该直线与YX交与点Q1作平行于Y轴的直线它与曲线YFX的交点记为P1,重复上面的过程,就在曲线YFX上得到点列P1,P2,,如图41,不难知道,这些点的横坐标构成的序列X0,X1,X2,,XN就是迭代序列若迭代序列收敛,则点列P1,P2,趋向于YF(X)与YX的交点P,因此迭代序列是否收敛,可以在图上观查出来,这种图因其形状像蜘蛛网而被称为“蜘蛛网”图。图42显示了分式线性函数F(X)(25X85)/(X3)取初值为55的迭代过程,从图中可以看出该迭代是收敛的,且收敛到不动点17。图42的“蜘蛛网”图可通过下面的程序获得CLEARF;图42函数F(X)(25X85)/(X3)的FX_25X85/X3G1PLOTFX,{X,10,20},PLOTSTYLERGBCOLOR1,0,0,DISPLAYFUNCTIONIDENTITYG2PLOTX,{X,10,20},PLOTSTYLERGBCOLOR0,1,0,DISPLAYFUNCTIONIDENTITYX055R{}R0GRAPHICS{RGBCOLOR0,0,1,LINE{{X0,X0},{X0,FX0},{F{X0},FX0}}}X0FX0SHOWG1,G2,R,R0,PLOTRANGE{1,20},DISPLAYFUNCTIONDISPLAYFUNCTION练习五通过观察图42或通过改变初值重画F(X)(25X85)/(X3)的蜘蛛网图,你是否能说明为什么该函数迭代的收敛速度与初值的选取关系不大对于其他收敛的分式线形函数的迭代,是否有类似的结论FX_25X85/X3G1PLOTFX,{X,10,20},PLOTSTYLERGBCOLOR1,0,0,DISPLAYFUNCTIONIDENTITYG2PLOTX,{X,10,20},PLOTSTYLERGBCOLOR0,1,0,DISPLAYFUNCTIONIDENTITYX055R{}R0GRAPHICS{RGBCOLOR0,0,1,LINE{{X0,X0},{X0,FX0},{F{X0},FX0}}}X0FX0SHOWG1,G2,R,R0,PLOTRANGE{1,20},DISPLAYFUNCTIONDISPLAYFUNCTION练习五通过观察图42或通过改变初值重画F(X)(25X85)/(X3)的蜘蛛网图,你是否能说明为什么该函数迭代的收敛速度与初值的选取关系不大对于其他收敛的分式线形函数的迭代,是否有类似的结论23认识混沌迭代序列若不收敛,它可能出现两种情况1迭代次数充分大时,迭代序列出现周期性重复。即存在自然数N,K0,使XNKXN,这样迭代序列便成为X0,X1,。。。XN,XN1,。。。,XNK1,XN,XN1,。。。,XNK1。。。此时,XN,XN1,。。。,XNK1称为周期为K的循环;而初始点X0称为预周期点。例如,对函数FX2SIN15X取初值X0的迭代,可画出其蜘蛛网图如43所示,由该图可判断该迭代得到了一个周期为2的循环,0是该循环的一个预周期点。2序列没有规律杂乱无章,称之为混沌。例如,图44是函数FX2SIN15X取初值为07的迭代图,可看出该迭代产生了混沌。图43迭代出现循环图44迭代出现混沌混沌具有两个特性非随机性和对初始值的敏感性。若初始值产生微小的误差,则该误差随迭代序列次数呈指数性增长,因此尽管迭代序列由初值和迭代函数完全决定,但随迭代次数的增加,它与随机序列并无多大差别,故混沌又称做确定性的随机运动。练习6通过观察图形进一步了解函数FXASINBX的迭代(多取几组参数及初值)。练习7下列函数的迭代是否会产生混沌(1)2X,0100)。然后慢慢地增加Α值,每增加一次,都重复前面的步骤,一直增加到Α4为止,这样得到的图形,称为FEIGNBAUM图图45是由Α取步长001所绘制的FEIGNBAUM图