c语言入门经典课后作业,《C语言入门经典(第4版)》课后练习附答案.doc

PAGE \* MERGEFORMAT3

目录

TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc495440246" 第1章 C语言编程 PAGEREF _Toc495440246 \h 4

HYPERLINK \l "_Toc495440247" 练习1.1 PAGEREF _Toc495440247 \h 4

HYPERLINK \l "_Toc495440248" 练习1.2 PAGEREF _Toc495440248 \h 4

HYPERLINK \l "_Toc495440249" 练习1.3 PAGEREF _Toc495440249 \h 5

HYPERLINK \l "_Toc495440250" 第2章 编程初步 PAGEREF _Toc495440250 \h 5

HYPERLINK \l "_Toc495440251" 习题2.1 PAGEREF _Toc495440251 \h 5

HYPERLINK \l "_Toc495440252" 习题2.2 PAGEREF _Toc495440252 \h 6

HYPERLINK \l "_Toc495440253" 习题2.3 PAGEREF _Toc495440253 \h 7

HYPERLINK \l "_Toc495440254" 习题2.4 PAGEREF _Toc495440254 \h 9

HYPERLINK \l "_Toc495440255" 第3章 条件判断 PAGEREF _Toc495440255 \h 10

HYPERLINK \l "_Toc495440256" 习题3.1 PAGEREF _Toc495440256 \h 10

HYPERLINK \l "_Toc495440257" 习题3.2 PAGEREF _Toc495440257 \h 12

HYPERLINK \l "_Toc495440258" 习题3.3 PAGEREF _Toc495440258 \h 16

HYPERLINK \l "_Toc495440259" 习题3.4 PAGEREF _Toc495440259 \h 18

HYPERLINK \l "_Toc495440260" 第4章 循环 PAGEREF _Toc495440260 \h 20

HYPERLINK \l "_Toc495440261" 习题4.1 PAGEREF _Toc495440261 \h 20

HYPERLINK \l "_Toc495440262" 习题4.2 PAGEREF _Toc495440262 \h 21

HYPERLINK \l "_Toc495440263" 习题4.3 PAGEREF _Toc495440263 \h 22

HYPERLINK \l "_Toc495440264" 习题4.4 PAGEREF _Toc495440264 \h 22

HYPERLINK \l "_Toc495440265" 习题4.5 PAGEREF _Toc495440265 \h 24

HYPERLINK \l "_Toc495440266" 第5章 数组 PAGEREF _Toc495440266 \h 26

HYPERLINK \l "_Toc495440267" 习题5.1 PAGEREF _Toc495440267 \h 26

HYPERLINK \l "_Toc495440268" 习题5.2 PAGEREF _Toc495440268 \h 28

HYPERLINK \l "_Toc495440269" 习题5.3 PAGEREF _Toc495440269 \h 29

HYPERLINK \l "_Toc495440270" 习题5.4 PAGEREF _Toc495440270 \h 30

HYPERLINK \l "_Toc495440271" 习题5.5 PAGEREF _Toc495440271 \h 32

HYPERLINK \l "_Toc495440272" 第6章 字符串和文本的应用 PAGEREF _Toc495440272 \h 34

HYPERLINK \l "_Toc495440273" 习题6.1 PAGEREF _Toc495440273 \h 34

HYPERLINK \l "_Toc495440274" 习题6.2 PAGEREF _Toc495440274 \h 41

HYPERLINK \l "_Toc495440275" 习题6.3 PAGEREF _Toc495440

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值