使用实例引用类的属性时,会发生动态绑定。即python会在实例每次引用类属性时,将对应的类属性绑定到实例上。
动态绑定的例子:
1 classA:2 deftest1(self):3 print("hello")4
5 deftest2(self):6 print("world")7
8 defbound():9 a =A()10 a.test1()11 A.test1 =A.test212 a.test1()13
14 if __name__ == "__main__":15 bound()
输出结果:
1 hello2 world
从上述代码中可以看到,类方法的变化是实时影响实例对方法的调用的,这说明python是在实例调用方法的过程中动态地查找类方法。
动态绑定的代价:
1 classA:2 deftest(self):3 pass
4
5 defone_loop(limited_time):6 a =A()7 for i inrange(limited_time):8 a.test()9 f =a.test10 for i inrange(limited_time):11 f()
上图两个循环中,一个调用a.test(),不断进行动态绑定,另一个则先把a.test赋值给f,只有一次动态绑定,通过对两个循环计时,测试动态绑定的代价。
输出结果:
1 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0009999275207519531, 0.008995771408081055, 0.19991111755371094, 1.2715933322906494, 15.831915855407715]2 [0.0, 0.0, 0.0, 0.0, 0.0, 0.12503726671039295, 0.09472344399590288, 0.1999776288967874, 0.131608969147562, 0.1553209370384522]
折线图中横坐标为log10(循环次数),纵坐标为秒数。
输出数据中,第一行为动态绑定和一次绑定耗费时间的差值,第二行为差值占动态绑定总时间的比例。
可以看出,在次数很小的时候,两者基本没有差距,或者说差距忽略不计。
在10^7次循环,即千万次循环的时候,动态绑定与静态绑定的耗费时间才出现了明显差异,当循环次数达到十亿级的时候,耗费时间相差15秒之多,约占总时间的15%。
由上可知,动态绑定效率低于静态绑定,但由于绑定代价耗时很少,在次数很少的时候基本没有影响。
动态绑定的优点:
1 classA:2 deftest_hello(self):3 print("hello")4
5 deftest_world(self):6 print("world")7
8 defmain():9 s =A()10 #提前绑定
11 f =s.test_hello12 #改变方法
13 A.test_hello =test_world14 f()15 #动态绑定
16 s.test_hello()17
18 if __name__ == "__main__":19 main()
输出结果:
1 hello2 world
类方法的变动能够实时反应在动态绑定上,而提前绑定则无法感知到类方法的变动。
总结:
1. 一次动态绑定代价很小,当绑定次数少的时候基本不影响效率,当绑定次数达到千万级时影响才会很显著。
2. 动态绑定实时跟踪类方法的变动,更具灵活性。