康华光《电子技术基础-数字部分》(第5版)笔记和课后习题(含考研真题)详解
目录
第1章 数字逻辑概论
1.1 复习笔记
1.2 课后习题详解
1.3 名校考研真题详解
第2章 逻辑代数与硬件描述语言基础
2.1 复习笔记
2.2 课后习题详解
2.3 名校考研真题详解
第3章 逻辑门电路
3.1 复习笔记
3.2 课后习题详解
3.3 名校考研真题详解
第4章 组合逻辑电路
4.1 复习笔记
4.2 课后习题详解
4.3 名校考研真题详解
第5章 锁存器和触发器
5.1 复习笔记
5.2 课后习题详解
5.3 名校考研真题详解
第6章 时序逻辑电路
6.1 复习笔记
6.2 课后习题详解
6.3 名校考研真题详解
第7章 存储器、复杂可编程器件和现场可编程门阵列
7.1 复习笔记
7.2 课后习题详解
7.3 名校考研真题详解
第8章 脉冲波形的变换与产生
8.1 复习笔记
8.2 课后习题详解
8.3 名校考研真题详解
第9章 数模与模数转换器
9.1 复习笔记
9.2 课后习题详解
9.3 名校考研真题详解
第10章 数字系统设计基础
10.1 复习笔记
10.2 课后习题详解
10.3 名校考研真题详解
内容简介
本书是康华光主编的《电子技术基础-数字部分》(第5版)的学习辅导书,主要包括以下内容:
(1)梳理知识脉络,浓缩学科精华。本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。本书参考大量相关辅导资料,对康华光主编的《电子技术基础-数字部分》(第5版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为考研参考书目。所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
本书提供电子书及打印版,方便对照复习。
试读(部分内容)
第1章 数字逻辑概论1.1 复习笔记
一、模拟信号与数字信号
1.模拟信号和数字信号
(1)模拟信号
在时间上连续变化,幅值上也连续取值的物理量称为模拟量,表示模拟量的信号称为模拟信号,处理模拟信号的电子电路称为模拟电路。
(2)数字信号
与模拟量相对应,在一系列离散的时刻取值,取值的大小和每次的增减都是量化单位的整数倍,即时间离散、数值也离散的信号。
表示数字量的信号称为数字信号,工作于数字信号下的电子电路称为数字电路。
(3)模拟量的数字表示
①对模拟信号取样,通过取样电路后变成时间离散、幅值连续的取样信号;
②对取样信号进行量化即数字化;
③对得到的数字量进行编码,生成用0和1表示的数字信号。
2.数字信号的描述方法
(1)二值数字逻辑和逻辑电平
在数字电路中,可以用0和1组成的二进制数表示数量的大小,也可以用0和1表示两种不同的逻辑状态。
在电路中,当信号电压在3.5~5 V范围内表示高电平;在0~1.5 V范围内表示低电平。以高、低电平分别表示逻辑1和0两种状态。
(2)数字波形
①数字波形的两种类型
非归零码:在一个时间拍内用高电平代表1,低电平代表0。
归零码:在一个时间拍内有脉冲代表1,无脉冲代表0。
②周期性和非周期性
周期性数字波形常用周期T和频率f来描述。脉冲波形的脉冲宽度用
表示,所以占空比
③实际数字信号波形
在实际的数字系统中,数字信号并不理想。当从低电平跳变到高电平,或从高电平跳到低电平时,边沿没有那么陡峭,而要经历一个过渡过程。图1-1为非理想脉冲波形。
图1-1 非理想脉冲波形
④时序图:表示各信号之间时序关系的波形图称为时序图。
二、数制
1.十进制
以10为基数的计数体制称为十进制,其计数规律为“逢十进一”。
任意十进制可表示为:
式中,
可以是0~9中任何一个数字。
如果将上式中的10用字母R代替,则可以得到任意进制数的表达式:
2.二进制
(1)二进制的表示方法
以2为基数的计数体制称为二进制,其只有0和1两个数码,计数规律为“逢二进一”。
任意二进制可表示为:
,即二进制数转换为十进制数的转换公式。
式中,
可以是0或1。
(2)二进制的优缺点
①优点:二进制的数字装置简单可靠,所用元件少;基本运算规则简单,运算操作方便。
②缺点:用二进制表示一个数时,位数多。
(3)二进制数的波形表示
二值数据常用数字波形来表示,用高、低电平表示1、0。
(4)二进制数据的传输
二进制数据从一处传输到另一处,可以采用串行或并行的方式:
①串行传输是逐位传送,所需设备简单,但速度相对较慢。
②并行传输是一组数据同时传送,传输速度快,但需要的传输线和部件较多。
3.十-二进制之间的转换
(1)整数部分
将十进制整数每除以一次2,就可根据余数得到二进制数的1位数字。因此,只要连续除以2直到商为0,就可由所有的余数求出二进制数。
以十进制数(37)D转换为二进制数为例。
(2)小数部分
将十进制小数乘以2,每次除去上次所得积中的整数所剩的小数再乘以2,直到满足误差要求进行“四舍五入”为止。
以十进制数(0.706)D转换为二进制数为例。
4.十六进制和八进制
(1)十六进制
以16为基数的计数体制称为十六进制,分别为0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F,其计数规律为“逢十六进一”。
(2)十六-二进制之间转换
以小数点为基准,整数部分从右到左每4位一组,不足4位的在高位补0;小数部分从左到右每4位一组,不足4位的在低位补0。每4位一组的二进制数就表示1位十六进制数。