ardl模型stata命令_空间计量模型专题(二):基于Stata的截面数据和面板数据SEM模型、SLM模型及SDM模型的LM检验、LR检验命令及其程序解析...

本文介绍了如何使用Stata进行空间计量模型的选择,包括截面数据模型的LM检验和面板数据模型的LM及LR检验。通过SEM、SLM和SDM模型的检验,确定何时适用哪种模型,并提供了相关命令和程序示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、引言

如何科学合理地选择常见的空间计量模型SEM模型、SLM模型及SDM模型,是困扰很多空间计量初学者的难题。此次,ASEF推送的文章可能会让您读后受益匪浅。

本文的剩余部分做如下安排:第二部分为截面数据模型的LM检验;第三部分为面板数据模型的LM和LR检验;第四部分为结束语。

二、截面数据模型的LM检验

截面数据模型的LM检验解决的是,截面数据SEM模型和SLM模型的选择问题。这部分内容比较简单,参见《高级计量经济学及Stata应用(第二版)》第29章空间计量经济学部分(577-579页)。

截面数据SEM模型和SLM模型的选择秉持的原则是:①如果LM-ERR与LM-LAG两个统计量都不显著,则采用OLS模型。②如果仅有一个统计量显著,例如,LM-ERR显著,则采用SEM模型;LM-LAG统计量显著,则采用SLM模型。③如果两个统计量都显著,则看RLM-ERR与RLM-LAG两个统计量。RLM-ERR统计量显著,则采用SEM模型;RLM-LAG统计量显著,则采用SLM模型。

相关命令及其程序如下:

*安装空间诊断命令spatdiag

ssc install spatdiag

*OLS回归

reg ti fiscal tax tec edu vati citipiti rti umcti pti sdi uiuti lvati vvulti cloti innov popd iec fdi ms rps

*截面数据空间相关性诊断

spatwmat using winv.dta,name(winv) standardize

spatdiag,weights(winv)

三、面板数据模型的LM和LR检验

(一)LM检验:选SEM模型还是SLM模型?

面板数据SEM模型和SLM模型的选择秉持的原则同截面数据一样。不再赘述。相关命令及其程序如下:

*导入数据与空间权重矩阵

use FISCAL_POLICY&INDUSTRIAL_STRUCTURE_281.dta,clear

spatwmat using winv.dta,name(winv)standardize

*面板数据设定

nc(281)

*SEM模型回归

*1.系统原始命令

### 如何在 STATA 中创建或使用空间权重矩阵 #### 创建空间权重矩阵 在 STATA 中,可以通过外部插件 `spmat` 来创建操作空间权重矩阵。以下是具体方法: 1. **安装 spmat 插件** 首先需要确认已安装 `spmat` 命令。如果未安装,可以运行以下命令来完成安装: ```stata ssc install spmat ``` 2. **通过邻接关系创建空间权重矩阵** 如果数据基于地理区域的邻接关系,则可利用 `spmat contiguity` 命令生成邻接矩阵: ```stata use your_data.dta, clear spmat contiguity idvar using shapefile.shp, normalize(row) ``` 这里 `idvar` 表示唯一的地区标识变量,而 `shapefile.shp` 是包含地理边界的形状文件[^4]。 3. **通过距离定义创建空间权重矩阵** 若需依据地理位置之间的欧几里得距离构建权重矩阵,则可通过如下方式实现: ```stata spmat idistance idvar latitude longitude, band(0,threshold) normalize(row) ``` 上述代码中的 `latitude` `longitude` 分别代表经纬度变量名;`band(0,threshold)` 定义了一个阈值范围,在此范围内两个地点被认为是相邻的[^1]。 #### 导入已有空间权重矩阵至 STATA 当已经拥有 SWM 文件或其他格式的空间权重矩阵时,可以直接导入到 STATA 并用于后续分析: ```stata spmat import swm using "path_to_your_file/myfile.swm", replace ``` 该语句会把指定路径下的 `.swm` 格式的空间权重矩阵加载进来并替换现有对象[^3]。 #### 应用空间权重矩阵于模型估计 一旦成功建立或者载入了适当形式的空间权重矩阵之后,就可以将其应用于各种空间计量经济模型之中。比如执行空间滞后模型(SAR),需要用到下面这样的指令序列: ```stata spregress depvar indepvars, model(sar) wmatrix(name_of_spmat_object) ``` 其中 `depvar` 为目标因变量名称列表,`indepvars` 列出了所有的解释因子集合;最后参数部分指定了之前所创建好的那个特定 SPMAT 对象作为输入源。 ### 注意事项 为了获得更精确的结果,在实际应用过程中应当仔细挑选合适类型的空间权重方案,并充分考虑可能存在的多重共线性异方差等问题的影响因素[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值