读取excel,matplotlib绘制柱状图及散点图,Seaborn绘制密度图、堆积面积图、雷达图,Gephi绘制重力图,常用函数
data_S.dropna(inplace = True) # 去掉缺失值
df.replace([np.nan,'无数据','无贴吧'],0,inplace=True)
df.sort_values(by = 'f',inplace = True,ascending=False)
df.reset_index(inplace=True)
hmean_S_male = data_S_male['height'].mean()一,导入模块及读取csv数据
二, 男女运动员身高分布 密度图
三, 身材分布情况 面积图
四, 解读身体前8位运动员 雷达图
五, cp热度 Gephi中绘制 重力图
一,导入模块及读取excel数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['font.serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串,中文不显示
import os
os.chdir('C:\\Users\\Administrator\\Desktop\\')
# 创建工作路径
df = pd.read_excel('奥运运动员数据.xlsx',sheetname=1,header=0)
二, 男女运动员身高分布 密度图
data_S = df[['event','name','gender','height']]
data_S.dropna(inplace = True) # 去掉缺失值
data_S_male = data_S[data_S['gender'] == '男']
data_S_female = data_S[data_S['gender'] == '女']
# 筛选数据,按照目标字段筛选
# 提取男女数据
hmean_S_male = data_S_male['height'].mean()
hmean_S_female = data_S_female['height'].mean()
# 计算男女平均身高
sns.set_style("ticks

该博客使用Python进行体测数据的分析,包括男女运动员的身高分布密度图,通过Seaborn绘制密度图和堆积面积图展示身材分布情况,并利用雷达图解读前8位运动员的身体状况。此外,还展示了使用Gephi绘制的CP热度重力图。
最低0.47元/天 解锁文章
 运动员数据&spm=1001.2101.3001.5002&articleId=110566443&d=1&t=3&u=16a98674f96d4563a0fe4ed7ab62d08b)
6802

被折叠的 条评论
为什么被折叠?



