python体测成绩数据分析_python数据分析实例(三) 运动员数据

该博客使用Python进行体测数据的分析,包括男女运动员的身高分布密度图,通过Seaborn绘制密度图和堆积面积图展示身材分布情况,并利用雷达图解读前8位运动员的身体状况。此外,还展示了使用Gephi绘制的CP热度重力图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

读取excel,matplotlib绘制柱状图及散点图,Seaborn绘制密度图、堆积面积图、雷达图,Gephi绘制重力图,常用函数

data_S.dropna(inplace = True) # 去掉缺失值

df.replace([np.nan,'无数据','无贴吧'],0,inplace=True)

df.sort_values(by = 'f',inplace = True,ascending=False)

df.reset_index(inplace=True)

hmean_S_male = data_S_male['height'].mean()一,导入模块及读取csv数据

二, 男女运动员身高分布 密度图

三, 身材分布情况 面积图

四, 解读身体前8位运动员 雷达图

五, cp热度 Gephi中绘制 重力图

一,导入模块及读取excel数据

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

import matplotlib as mpl

mpl.rcParams['font.sans-serif'] = ['KaiTi']

mpl.rcParams['font.serif'] = ['KaiTi']

mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串,中文不显示

import os

os.chdir('C:\\Users\\Administrator\\Desktop\\')

# 创建工作路径

df = pd.read_excel('奥运运动员数据.xlsx',sheetname=1,header=0)

二, 男女运动员身高分布 密度图

data_S = df[['event','name','gender','height']]

data_S.dropna(inplace = True) # 去掉缺失值

data_S_male = data_S[data_S['gender'] == '男']

data_S_female = data_S[data_S['gender'] == '女']

# 筛选数据,按照目标字段筛选

# 提取男女数据

hmean_S_male = data_S_male['height'].mean()

hmean_S_female = data_S_female['height'].mean()

# 计算男女平均身高

sns.set_style("ticks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值