。
实际上,我们对原始椭圆作一个平移变换(x-u)和一个旋转变换(V*),可以使其中心平移到原点,长短轴的方向与坐标轴重合。而绘等概率椭圆的过程则与此相反,先用标准的椭圆方程产生组成曲线的离散点,然后经过相反的旋转变换和平移,得到原始的椭圆。
举例来说,首先,设置二维正态分布的参数,均值和协方差,并用mvnrnd产生一组符合此分布的随机数。
Mu = [2 3]';
Sigma = [0.9 0.4;0.4 0.2];
p = mvnrnd(Mu,Sigma,100);
plot(p(:,1),p(:,2),'.','MarkerSize',6)
设置半径,进行特征值分解
r =1;
[V,D] = eig(Sigma);
用linspace产生一个坐标轴(y)上的一组等间隔离散坐标值,再根据标准椭圆方程产生对应的x的坐标。
y =
linspace(-sqrt(r^2*D(2,2)),sqrt(r^2*D(2,2)),60);
% compute x
x(1,:) = sqrt((r^2-y(:).^2/D(2,2))*D(1,1));
x(1,:) = real(x(1,:));
这只产生了半个椭圆,还要产生另一半(注意两条曲线的坐标旋转方向要一致),然后旋转,平移,画图:
Ellip = [x,-x(1,:)]; % x
Ellip(2,:) = [y,fliplr(y)]; %y
Ellip = Ellip'*inv(V); % rotate
Ellip(:,1) = Ellip(:,1)+Mu(1); %shift
Ellip(:,2) = Ellip(:,2)+Mu(2);
hold on;
plot(Ellip(:,1),Ellip(:,2));
plot(Mu(1),Mu(2),'+'); %Plot center
最终的效果:
另外,在对原始椭圆做旋转变换时,如果在V的前面再乘以一项,改为
,则椭圆会变为圆。对多元正态分布的随机变量应用此变换,则其分布在各个方向上也变为均匀的。这就是信号处理中的白化变换。
三维正态分布的等概率曲面为椭球,其绘制过程也是类似的。
产生1/8曲面
xhalf = linspace(sqrt(r^2*D(1,1)),0,Nint);
Ninthalf = round(Nint/2);
zsect = zeros(Nint,Ninthalf);
ysect = zeros(Nint,Ninthalf);
for ti = 1:Nint
r2d = r^2 - xhalf(ti).^2/D(1,1);
ysect(ti,:) = linspace(0,sqrt(r2d*D(2,2)),Ninthalf);
zsect(ti,:) = sqrt((r2d - ysect(ti,:).^2/D(2,2) )*D(3,3));
xsect(ti,1:Ninthalf) = xhalf(ti);
end
zsect = real(zsect);
通过镜像产生1/4
%x>0,Z>0
xsect = [xsect,xsect];
ysect = [ysect,fliplr(ysect)];
zsect = [zsect,-fliplr(zsect)];
1/2
%x>0
xsect = [xsect,xsect];
ysect = [ysect,-fliplr(ysect)];
zsect = [zsect,fliplr(zsect)];
1/1
% make it a whole
xsect = [xsect;-flipdim(xsect,1)];
ysect = [ysect;flipdim(ysect,1)];
zsect = [zsect;flipdim(zsect,1)];