本篇文章就高中数学必修三种第一章第一节常见的一般题型给出例题,并给出解题分析,针对第一章的学习,只要同学们做一些题即可。
一、考点一:算法的概念及特征题
1、下列关于算法的描述有几种,(1)对一类问题都有效(2)对个别问题有效(3)计算可以一步步地进行,每一步都有唯一的结果(4)算法是一种通法,只要按部就班地做,总能得到结果。其中说法正确的有几个:
解析:算法通常是指可以用计算机来解决的某一类问题的程序或步骤,所以(1)正确,(2)错误。因为算法的步骤或程序必须是明确的,有效的,而且必须在有限步骤内完成,所以(3)(4)正确。
总结:解决有关算法概念的判断题,应根据算法的特征进行判断,特别注意应能在有限步骤内求解某一类问题,其中的每一步必须具有明确的意义且可行,不能模棱两可。
对同一问题可以设计不同的算法。
二、考点二 算法的设计
1、解方程问题的算法设计
题1:写出解方程2x+7=0的一个算法
解:解法1:算法步骤如下:第一步,移项,得2x=-7;
第二步,等式两边除以2,的x=-7/2;
解法2:算法步骤如下:第一步,ax+b=0(a≠0)的解释x=-b/a;
第二步,将a=2,b=7代入上式,得x=-7/2;
解题分析:对于问题的求解过程,我们既要强调对“通法”的掌握,如方法2,又要强调对所学知识的灵活运用,如方法一,比较两种解法,方法一更精炼,但对于有公式的,利用公式解决问题是比较理想的算法。
题2:写出解二元一次方程组{x-2y=-1①,2x+y=1②}的一个算法.
解:解法1:算法步骤如下:
第一步,②-①*2,得5y=3,③
第二步,解③得y=3/5,
第三步,将y=3/5代入①得x=1/5,
第四步,得方程组的解为x=1/5,y=3/5。
解法2:算法步骤如下:第一步,由②移项得y=1-2x,④
第二步,将④代入①得x=1/5 ⑤
第三步,把⑤代入④得y=3/5,
第四步,方程组的解为x=1/5,y=3/5。
解题分析:通过求解二元一次方程组,知道求解某个问题的算法不一定唯一,对于具体的实例可以选择合适的算法,尽量做到省时省力,使得所用算法为最优算法。
2、直接应用数学公式的算法设计题型。
题4:设计一个算法,求表面积为16π的球的体积。
解:方法1:算法步骤如下:
第一步:取S=16π,
第二步计算R=(S/4π)^(1/2) 注:由公式S=4πR^2得出。
第三步,计算V=4/3πR^3.
第四步,输出运算结果。
解法2:算法步骤如下:第一步:取S=16π,
第二步:计算V=4/3π{(S/4π)^(1/2)}^3.
第三步,输出运算结果。
解题分析:方法一是分步算式,清楚明白,方法2是综合算式,步骤简练,两种算法各有长处,设计算法时,不要设计的过于零碎,步骤过多,以免实际操作比较麻烦,因此常考虑综合算法。就如我们题中的算法2.
3、累加、累乘问题的算法设计
题5 写出求1+2+3+4+5的值得一个算法。
第一步,计算1+2,得3.
第二步,将第一步中运算结果3+3,得6.
第三步,将第二步中运算结果6+4,得10.
第四步,将第三步中运算结果10+5,得15.
第五步,输出运算结果。
方法2:算法步骤如下:
第一步:取n=5.
第二步,计算n(n+1)/2,
方法3:算法步骤如下:
第一步,取n=5.
第二步,另i=1,S=0.
第三步,判断i≤n是否成立,若不成立,输出S,结束运算,若成立,执行下一步。
第四步,令S的值加i,仍用S表示,令i的值加1,仍用i表示,返回第三步。
解题分析:方法1为累加法,将步骤一直写下去,便得到任意有限个数相加的算法,方法2的算法应用了简捷易懂的思想方法。方法3具有代表性,体现了算法的本质,即对一类问题的机械的统一的求解方法,其中S成为累加变量,i成为计数变量。
下一讲我们讲 函数求值问题的算法的设计。希望你不要错过。