技术
- 前端: bootstrap3 + vue + jquery
- 后端: django 2.2.1 +djangorestframework (MVC框架)
- 数据库: mysql
- 数据集:
- 1. 豆瓣数据集+豆瓣电影爬虫+csv存储
- 2. movielens数据集+图片+用户数据和评分数据+csv存储
功能介绍
- 录入电影信息
- 用户打分
- 电影标签分类
- 电影推荐
- 电影分享
- 电影收藏
- 后台管理系统。
算法
基于用户的协同过滤
算法: 协同过滤, 根据用户的打分来进行推荐。从所有打分的用户中找出和当前用户距离最近的n用户,然后从n个用户打分的电影中找15个当前用户未看过的电影。 最近距离算法通过协同过滤来实现。 推荐算法—协同过滤 - 简书 此项目采用的是皮尔逊相关系数来计算相似度。采取基于用户模型的的协同过滤(Neighbor-based Collaborative Filtering)。 皮尔森距离公式:

这是一个结合了Django后端、协同过滤算法和文本卷积网络的电影推荐系统。系统支持用户打分、电影推荐、标签分类、电影分享和收藏功能。算法包括基于用户和物品的协同过滤,以及使用Tensorflow的文本卷积网络进行个性化推荐。此外,还提供豆瓣数据集的爬取和存储。
最低0.47元/天 解锁文章
792

被折叠的 条评论
为什么被折叠?



