去年9月时给申请牛剑数学专业的几个熊孩纸作辅导,发现好些个家伙对于积分计算法则贼麻溜,但是对这些法则的来龙去脉完全不闻不问,我也很是不解这种心态。于是就让熊孩纸试着通过求一系列矩形的面积和,来估计某个函数曲线下的面积,然后考虑无穷分割的极限,证明如下几个简单初等函数的定积分结果:
下面我们将逐一给出证明。
碎碎念:这个公众号的画风现在是越来越自娱自乐化了。。。
定积分的表达式
设连续函数
在
上有定义。若我们将
分成
个等间隔的小区间,其中第
个区间的范围是
,则在这个区间内曲线
下的面积就近似等于矩形面积
。对所有
个矩形求和,我们就可以得到在
区间内曲线
下的面积的近似值。
当我们分割得越来越细,即取