这是《python算法教程》的第11篇读书笔记,笔记主要内容是使用分治法求解凸包。
平面凸包问题简介
在一个平面点集中,寻找点集最外层的点,由这些点所构成的凸多边形能将点集中的所有点包围起来。
如下图所示,红色的点能将点集中所有的点包围起来。
convexHull.png
分治法求解思路
按照暴力法的思路(求出所有由点集任意两点的直线,再获取使得点集剩余的点在该直线的一侧的直线)去求解凸包问题,显然算法复杂度达到了n^3,这并不是在时间复杂度上可以接受的算法。
因此,可考虑使用分治法去求解凸包。大体思路如下:
1.找出由横坐标最大、最小的两个点p1p2所组成的直线。用该直线将点集分成上下两set1,set2部分。
2.分别从set1、set2找出与线段p1p2构成的面积最大的三角形的点p3,p4。
3.从set1找出在直线p1p3左侧的点集leftset1、在直线p3p2右侧的点集[图片上传中...(行列式.JPG-bc60bb-1525191974104-0)]
rightset1。
4将leftset1,leftset2重复2、3步骤,直至找不到在直线更外侧的点。
5.从set2找出在直线p1p4左侧的点集leftset2、在直线p3p4右侧的点集rightset2。
6.将leftset1,leftset2重复2、3步骤,直至找不到在直线更外侧的点。
点与直线的位置判断
可通过以下行列式的正负值判断直线与点之间的位置关系,同时数值为点与线段所围成的三角形的面积:
image.png
下图表明了若点在直线外围(图中用线段表示直线),上述行列式的值的正负性。
有一点需要注意,下图成立的前提条件是组成直线的两个点(x1,y1)和(x2,y2)必须满足x1
position.jpg
代码示例
下面的代码示例中加入了绘制散点图的代码,便于观察每一步的情况以及查看最终结果。
#递归法求解凸包
import random
import matplotlib.pyplot as plt
#通过计算三角形p1p2p3的面积(点在直线左边结果为正,直线右边结果为负)来判断 p3相对于直线p1p2的位置
def calTri(p1,p2,p3):
size=p1[0]*p2[1]+p2[0]*p3[1]+p3[0]*p1[1]-p3[0]*p2[1]-p2[0]*p1[1]-p1[0]*p3[1]
return size
#找出据直线最远的点(该点与直线围成的三角形的面积为正且最大)
def maxSize(seq,dot1,dot2,dotSet):
maxSize=float('-inf')
maxDot=()
online=[]
maxSet=[]
for u in seq:
size=calTri(dot1,dot2,u)
#判断点u是否能是三角形u dot1 dot2 的面积为正
if size<0:
continue
elif size==0:
online.append(u)
#若面积为正,则判断是否是距离直线最远的点
if size>maxSize:
if len(maxDot)>0:
maxSet.append(maxDot)
maxSize=size
maxDot=u
else:
maxSet.append(u)
#结果判断
#maxSet为空
if not maxSet:
#没找到分割点,同时可能有点落在直线dot1 dot2上
if not maxDot:
dotSet.extend(online)
return [],()
#有分割点
else:
dotSet.append(maxDot)
return [],maxDot
#maxSet不为空
else:
dotSet.append(maxDot)
return maxSet,maxDot
#找出据直线最远的点(该点与直线围成的三角形的面积为负数且最大)
def minSize(seq,dot1,dot2,dotSet):
minSize=float('inf')
minDot=()
online=[]
minSet=[]
for u in seq:
size=calTri(dot1,dot2,u)
#判断点u是否能是三角形u dot1 dot2 的面积为负
if size>0:
continue
elif size==0:
online.append(u)
#若面积为负,则判断是否是距离直线最远的点
if size
if len(minDot)>0:
minSet.append(minDot)
minDot=u
minSize=size
else:
minSet.append(u)
#结果判断
#maxSet为空
if not minSet:
#没找到分割点,同时可能有点落在直线dot1 dot2上
if not minDot:
dotSet.extend(online)
return [],()
#有分割点
else:
dotSet.append(minDot)
return [],minSet
#maxSet不为空
else:
dotSet.append(minDot)
return minSet,minDot
#上包的递归划分
def divideUp(seq,dot1,dot2,dot3,dot4,dotSet=None):
print(dot1,dot2,dot3,dot4)
#初始化第一次运行时的参数
if len(seq)==0:
return dotSet
if dotSet is None:
dotSet=[]
if len(seq)==1:
dotSet.append(seq[0])
return dotSet
leftSet,rightSet=[],[]
#划分上包左边的点集
leftSet,maxDot=maxSize(seq,dot1,dot2,dotSet)
#绘图检测---------------------------------------------------------------
plt.title('up_left')
#plt.axis([-20,20,-20,20])
plt.axis([-1100,1100,-1100,1100])
#plt.scatter([d[0] for d in seq0],[d[1] for d in seq0],color='black')
plt.scatter([d[0] for d in seq],[d[1] for d in seq],color='blue')
plt.scatter([dot1[0],dot2[0]],[dot1[1],dot2[1]],color='orange')
if maxDot:
plt.scatter(maxDot[0],maxDot[1],color='red')
plt.show()
#----------------------------------------------------------------------
#对上包左包的点集进一步划分
if leftSet:
divideUp(leftSet,dot1,maxDot,maxDot,dot2,dotSet)
#划分上包右边的点集
rightSet,maxDot=maxSize(seq,dot3,dot4,dotSet)
#绘图检测---------------------------------------------------------------
plt.title('up_right')
#plt.axis([-20,20,-20,20])
plt.axis([-1100,1100,-1100,1100])
#plt.scatter([d[0] for d in seq0],[d[1] for d in seq0],color='black')
plt.scatter([d[0] for d in seq],[d[1] for d in seq],color='blue')
plt.scatter([dot3[0],dot4[0]],[dot3[1],dot4[1]],color='orange')
if maxDot:
plt.scatter(maxDot[0],maxDot[1],color='red')
plt.show()
#----------------------------------------------------------------------
#对上包右包的点集进一步划分
if rightSet:
divideUp(rightSet,dot3,maxDot,maxDot,dot4,dotSet)
return dotSet
#下包的递归划分
def divideDown(seq,dot1,dot2,dot3,dot4,dotSet=None):
#初始化第一次运行时的参数
if len(seq)==0:
return dotSet
if dotSet is None:
dotSet=[]
if len(seq)==1:
dotSet.append(seq[0])
return dotSet
leftSet,rightSet=[],[]
#划分下包左边的点集
leftSet,minDot=minSize(seq,dot1,dot2,dotSet)
#绘图检测---------------------------------------------------------------
plt.title('down_left')
#plt.axis([-20,20,-20,20])
plt.axis([-1100,1100,-1100,1100])
#plt.scatter([d[0] for d in seq0],[d[1] for d in seq0],color='black')
plt.scatter([d[0] for d in seq],[d[1] for d in seq],color='blue')
plt.scatter([dot1[0],dot2[0]],[dot1[1],dot2[1]],color='orange')
if minDot:
plt.scatter(minDot[0],minDot[1],color='red')
plt.show()
#----------------------------------------------------------------------
#对下包的左包进行进一步划分
if leftSet:
divideDown(leftSet,dot1,minDot,minDot,dot2,dotSet)
#划分下包右包的点集
rightSet,minDot=minSize(seq,dot3,dot4,dotSet)
#绘图检测---------------------------------------------------------------
plt.title('down_right')
#plt.axis([-20,20,-20,20])
plt.axis([-1100,1100,-1100,1100])
#plt.scatter([d[0] for d in seq0],[d[1] for d in seq0],color='black')
plt.scatter([d[0] for d in seq],[d[1] for d in seq],color='blue')
plt.scatter([dot3[0],dot4[0]],[dot3[1],dot4[1]],color='orange')
if minDot:
plt.scatter(minDot[0],minDot[1],color='red')
plt.show()
#----------------------------------------------------------------------
#对下包的右包进一步划分
if rightSet:
divideDown(rightSet,dot3,minDot,minDot,dot4,dotSet)
return dotSet
#递归主函数
def mainDivide(seq):
#将序列中的点按横坐标升序排序
seq.sort()
res=[]
#获取横坐标做大、最小的点及横坐标中位数
dot1=seq[0]
dot2=seq[-1]
seq1=[]
maxSize=float('-inf')
maxDot=()
seq2=[]
minSize=float('inf')
minDot=()
#med_x=(seq[len(seq)//2][0]+seq[-len(seq)//2-1][0])/2
#对序列划分为直线dot1 dot2左右两侧的点集并找出两个点集的距直线最远点
for u in seq[1:-1]:
size=calTri(dot1,dot2,u)
if size>0:
if size>maxSize:
if len(maxDot)>0:
seq1.append(maxDot)
maxSize=size
maxDot=u
continue
else:
seq1.append(u)
elif size<0:
if size
if len(minDot)>0:
seq2.append(minDot)
minSize=size
minDot=u
continue
else:
seq2.append(u)
print('seq1',seq1,maxDot)
print('seq2',seq2,minDot)
#调用内建递归函数
res1=divideUp(seq1,dot1,maxDot,maxDot,dot2)
res2=divideDown(seq2,dot1,minDot,minDot,dot2)
if res1 is not None:
res.extend(res1)
if res2 is not None:
res.extend(res2)
for u in [dot for dot in [dot1,dot2,maxDot,minDot] if len(dot)>0]:
res.append(u)
return res
seq0=[(random.randint(-1000,1000),random.randint(-1000,1000)) for x in range(20)]
seq0=list(set(seq0))
res=mainDivide(seq0)
print('res',sorted(res))
plt.axis([-1100,1100,-1100,1100])
plt.title("overview")
plt.scatter([dot[0] for dot in seq0],[dot[1] for dot in seq0],color='black')
plt.scatter([dot[0] for dot in res],[dot[1] for dot in res],color='red')
plt.show()