python中heapq的库是什么_深入了解Python之heapq内置模块介绍

heapq 是 python 的内置模块,源码位于 Lib/heapq.py ,该模块提供了基于堆的优先排序算法。

堆的逻辑结构就是完全二叉树,并且二叉树中父节点的值小于等于该节点的所有子节点的值。这种实现可以使用 heap[k] <= heap[2k+1] 并且 heap[k] <= heap[2k+2] (其中 k 为索引,从 0 开始计数)的形式体现,对于堆来说,最小元素即为根元素 heap[0]。

可以通过 list 对 heap 进行初始化,或者通过 api 中的 heapify 将已知的 list 转化为 heap 对象。

heapq 提供的函数方法

heapq.heappush(heap, item)

heapq.heappop(heap):返回 root 节点,即 heap 中最小的元素

heapq.heappushpop(heap, item):向 heap 中加入 item 元素,并返回 heap 中最小元素

heapq.heapify(x)

heapq.nlargest(n, iterable, key=None):返回可枚举对象中的 n 个最大值,并返回一个结果集 list,key 为对该结果集的操作

heapq.nsmallest(n, iterable, key=None):同上相反

demo

1. 通过 heapq api 对 list 进行排序def heapsort(iterable):

h = []

for i in iterable:

heapq.heappush(h, i)

return [heapq.heappop(h) for i in range(len(h))]

s = [3, 5, 1, 2, 4, 6, 0, 1]

print(heapsort(s))

输出如下

[0, 1, 1, 2, 3, 4, 5, 6]

2. 通过 key,找出对象列表中 price 最小的一项portfolio = [

{'name': 'IBM', 'shares': 100, 'price': 91.1},

{'name': 'AAPL', 'shares': 50, 'price': 543.22},

{'name': 'FB', 'shares': 200, 'price': 21.09},

{'name': 'HPQ', 'shares': 35, 'price': 31.75},

{'name': 'YHOO', 'shares': 45, 'price': 16.35},

{'name': 'ACME', 'shares': 75, 'price': 115.65}

]

cheap = heapq.nsmallest(1, portfolio, key=lambda s: s['price'])

print(cheap)

输出如下

[{'shares': 45, 'price': 16.35, 'name': 'YHOO'}]

extend

上文讲到 heapq 是最小堆的实现,那么我们根据 heapq 的源码分析一下在 python 中如何通过 api 实现将 list 转化为最小堆(父节点的关键字比左右子节点都小)

可分为如下几步操作:

1. 从最后一个有子节点的元素开始,将这个父节点元素和其子节点看做一个单元

2. 在单元中,将两个子节点中较小的元素与父节点调换位置(不需要判断父节点和这个最小子节点的大小关系),通过这一步操作即可将这个单元变更为最小堆单元

3. 通过 while 循环可以将较小的元素向上推def heapilize_list(x):

n = len(x)

# 获取存在子节点的节点 index 列表,并对每个节点单元进行最小堆处理

for i in reversed(range(n // 2)):

raiseup_node(x, i)

def put_down_node(heap, startpos, pos):

current_item = heap[pos]

# 判断单元中最小子节点与父节点的大小

while pos > startpos:

parent_pos = (pos - 1) >> 1

parent_item = heap[parent_pos]

if current_item < parent_item:

heap[pos] = parent_item

pos = parent_pos

continue

break

heap[pos] = current_item

def raiseup_node(heap, pos):

heap_len = len(heap)

start_pos = pos

current_item = heap[pos]

left_child_pos = pos * 2 + 1

while left_child_pos < heap_len:

right_child_pos = left_child_pos + 1

# 将这个单元中的最小子节点元素与父节点元素进行位置调换

if right_child_pos < heap_len and not heap[left_child_pos] < heap[right_child_pos]:

left_child_pos = right_child_pos

heap[pos] = heap[left_child_pos]

pos = left_child_pos

left_child_pos = pos * 2 + 1

heap[pos] = current_item

put_down_node(heap, start_pos, pos)

p = [4, 6, 2, 10, 1]

heapilize_list(p)

print(p)

输出如下

[1, 6, 2, 10, 4]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值