用python画函数的梯度图_python应用Axes3D绘图(批量梯度下降算法)

本文实例为大家分享了python批量梯度下降算法的具体代码,供大家参考,具体内容如下

问题:

将拥有两个自变量的二阶函数绘制到空间坐标系中,并通过批量梯度下降算法找到并绘制其极值点

大体思路:

首先,根据题意确定目标函数:f(w1,w2) = w1^2 + w2^2 + 2 w1 w2 + 500

然后,针对w1,w2分别求偏导,编写主方法求极值点

而后,创建三维坐标系绘制函数图像以及其极值点即可

具体代码实现以及成像结果如下:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d.axes3d import Axes3D

#f(w1,w2) = w1^2 + w2^2 + 2*w1*w2 + 500

def targetFunction(W): #目标函数

w1,w2 = W

return w1 ** 2 + w2**2 + 2*w1*w2+500

def gradientFunction(W): #梯度函数:分别对w1,w2求偏导

w1,w2 = W

w1_grad = 2*w1+2*w2

w2_grad = 2*w2 + 2*w1

return np.array([w1_grad,w2_grad])

def batch_gradient_distance(targetFunc,gradientFunc,init_W,learning_rate = 0.01,tolerance = 0.0000001): #核心算法

W = init_W

target_value = targetFunc(W)

counts = 0 #用于计算次数

while counts<5000:

gradient = gradientFunc(W)

next_W = W-gradient*learning_rate

next_target_value = targetFunc(next_W)

if abs(next_target_value-target_value)

print("此结果经过了", counts, "次循环")

return next_W

else:

W,target_value = next_W,next_target_value

counts += 1

else:

print("没有取到极值点")

if __name__ == '__main__':

np.random.seed(0) #保证每次运行随机出来的结果一致

init_W = np.array([np.random.random(),np.random.random()]) #随机初始的w1,w2

w1,w2 = batch_gradient_distance(targetFunction,gradientFunction,init_W)

print(w1,w2)

#画图

x1=np.arange(-10,11,1) #为了绘制函数的原图像

x2=np.arange(-10,11,1)

x1, x2 = np.meshgrid(x1, x2) # meshgrid :3D坐标系

z=x1**2 + x2**2 + 2*x1*x2+500

fig = plt.figure()

ax = Axes3D(fig)

ax.plot_surface(x1, x2, z) #绘制3D坐标系中的函数图像

ax.scatter(w1,w2, targetFunction([w1,w2]), s=50, c='red') #绘制已经找到的极值点

ax.legend() #使坐标系为网格状

plt.show() #显示

函数以及其极值点成像如下(红点为极值点):

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: python应用Axes3D绘图(批量梯度下降算法)

本文地址: http://www.cppcns.com/jiaoben/python/303779.html

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页