cad制图初学入门_CAD制图初学入门技巧之阵列功能

阵列功能在CAD制图过程中也是较为常用的功能之一,但是有些CAD制图初学入门者对此功能并不是很了解,接下来就给大家详细介绍一下阵列功能的使用技巧吧!

【阵列】命令启动方式:

1、在命令窗口直接输入ARRY。

2、点击菜单栏【修改】-【阵列】按钮。

3、点击【修改】-【矩形阵列/环形阵列】按钮。

4、在【默认】选项板中选择【修改】-【矩形阵列/环形阵列】命令。

绘制星形轮架:

1、首先选择【默认】—【图层】—【图形特性】命令,在“图层状态管理器”中建立“粗实线”和“中心线”两个新的图层。

(1)将第一个图层命名为“粗实线”图层,将线宽设置为“0.30mm,其余属性按默认设置即可。

(2)将第二个图层命名为“中心线”图层,颜色为红色,线型设置为CENTER,其余属性按默认设置即可

2、设置当前图层为“中心线”图层,开始绘制中心线。执行【直线】命令,分别绘制端点坐标为{(-545,0),(545,0)}和{(0,-545),(0,545)}; 然后点击【绘图】-【圆】按钮,绘制一个圆心坐标为(0,0),半径为450的圆。

b680f08d1e56ab5cba2934ff4efd7d4a.png

3、执行【图形特性】命令,设置当前图层为“粗实线”图层,选择【绘图】-【圆】命令,绘制两个圆心坐标为(0,0),半径分别为250和500的圆;然后再次执行【圆】命令,绘制两个圆心坐标为(0,450),半径分别为45和75的圆。

1fe14bdac6ccdfc71ac6e8a0edb61c43.png

4、点击【绘图】—【直线】按钮,绘制直线。

5、再次执行【直线】命令,绘制另一侧的直线,得到下图。

fbe5c427b01b22bc40989e41520d7135.png

6、点击【修改】—【环形阵列】按钮,设置项目数为6,填充角度为360即可。如下图所示:

8a745d677877580a177dfe7da2b6c839.png

以上就是阵列功能的使用技巧,对此不清楚的CAD制图初学入门者可以参考本篇CAD教程来了解一下哦~

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值