opencv3和qt5计算机视觉应用开发pdf_NeurIPS 2019:计算机视觉论文回顾

本文回顾了2019年NeurIPS会议上关于计算机视觉领域的若干重要论文,涵盖了全梯度表示、无监督目标分割、高效训练巨型神经网络、条件可变形模板学习等方面的研究,探讨了模型的解释性、稳定性与性能提升。
摘要由CSDN通过智能技术生成

作者:Maria Dobko

编译:ronghuaiyang

导读

这是2019年12月9日至14日在温哥华举行的NeurIPS 2019的概述(笔记)。这篇文章中提到的所有论文都是在计算机视觉领域。

4d5d8ed47a1e12e97f055099eba4e8fc.png

NIPS 2019上的一些论文回顾

会议网站:https://neurips.cc/

论文全集:https://papers.nips.cc/book/advances-in-neural-information-processing-systems-32-2019

这是2019年12月9日至14日在温哥华举行的NeurIPS 2019的概述(笔记)。超过13000名参与者。两天的研讨会,一天的辅导课和三天的主要会议。在这篇文章中,我会简要地描述了一些论文,它们引起了我的注意。这篇文章中提到的所有论文都是在计算机视觉领域,这是我的研究领域。

神经网络可视化的全梯度表示

Suraj Srinivas, François Fleuret

论文链接:https://papers.nips.cc/paper/8666-full-gradient-presentation-for-neural-networkvisualiz.pdf

探索输入部分的重要性如何被显著性映射捕获。研究表明,任何神经网络的输出都可以分解为输入梯度项和神经元梯度项。他们证明了在卷积网络中聚合这些梯度映射可以改善显著性映射。论文提出了FullGrad显著性,它结合了输入梯度和特征级偏差梯度,因此,满足两个重要概念:局部(模型对输入的敏感性)和全局(显著性图的完整性)。

05014a352b36aabd52572951ae313a11.png

扰动生成模型中目标分割的出现 Emergence of Object Segmentation in Perturbed Generative Models

Adam Bielski, Paolo Favaro

论文链接:https://arxiv.org/pdf/1905.12663.pdf

提出了一种不需要人工标注就能从一组图像中学习目标分割的框架。其主要思想是建立在这样的观察之上:相对于给定的背景,物体的位置可以被局部扰动,而不影响场景的真实感。训练生成模型,生成分层图像表示:背景掩模前景。作者使用小的随机移位来暴露无效的分割。他们用两个生成器训练StyleGAN,用蒙版分别作为背景和前景。它经过训练,使具有移位前景的合成图像呈现出有效的场景。在生成的掩码上还有两个损失项,以促进二值化并且帮助最小掩码的收敛,这两个项都添加到WGAN-GP生成器损失中。他们还训练了编码器与固定的生成器,以获得分

OpenCV3和Qt5计算机视觉应用开发》是一本介绍如何结合OpenCV3和Qt5进行计算机视觉应用开发的书籍。本书共分为八章,内容丰富而全面。 第一章是对计算机视觉和相关技术的概述,引导读者了解计算机视觉的基础知识,以及OpenCV3和Qt5的基本概念和使用方法。 第二到第五章依次介绍了OpenCV3和Qt5的基础知识和使用方法。其中,在OpenCV3的章节中,读者能够学习到如何使用OpenCV3进行图像处理、特征提取、目标检测等计算机视觉任务。而在Qt5的章节中,读者将学习到如何使用Qt5进行图形界面设计,以及如何将OpenCV3与Qt5进行桥接,实现计算机视觉应用的图形化界面。 第六章介绍了如何在Qt5中导入OpenCV3库,并给出了一些在Qt中使用OpenCV进行图像处理的示例代码。读者可以通过这一章的学习,了解如何在Qt中调用OpenCV函数,实现各种图像处理功能。 第七章是一个完整的计算机视觉应用案例,案例中介绍了一个基于OpenCV3和Qt5开发的人脸识别系统。通过阅读这一章的内容,读者可以了解到如何运用OpenCV3和Qt5构建一个实际的计算机视觉应用系统,并了解到其中的原理和细节。 第八章是有关Qt5的高级使用和扩展。本章内容较为高级,主要介绍了如何使用Qt5进行多线程编程、网络编程和数据库操作等高级技术,并给出了一些示例代码。 总之,《OpenCV3和Qt5计算机视觉应用开发》是一本非常实用的书籍,适合计算机视觉爱好者和开发者阅读,通过学习本书,读者能够掌握使用OpenCV3和Qt5进行计算机视觉应用开发的技巧和方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值