ARIMA建模分析分析的步骤
数据可视化,识别平稳性
- 对非平稳的时间序列数据,做平稳性处理,得到平稳序列
- 根据偏自相关系数和自相关系数选择模型
- 模型的阶数在确定之后,对模型进行参数估计
- 判断(诊断)残差序列是否为白噪声序列,删除不显著的参数
- 利用已通过检验的模型进行预测
- 预测结果需要通过相关逆变换进行还原
时间序列的分解
时间序列是由四种因素组成的:长期趋势、季节变动、循环变动、随机波动。当我们对一个时间序列进行预测时,应该考虑将上述四种因素从时间序列中分解出来。
分解之后,能够克服其他因素的影响,仅仅考虑一种因素对时间序列的影响,也可以分析他们之间的相互作用,以及他们对时间序列的综合影响。当去掉这些因素后,就可以更好地进行时间序列之间的比较,从而更加客观的反映事物变化发展规律,序列可以用来建立回归模型,从而提高预测精度。
时间序列的四种因素具有不同的特点:长期趋势反映了事物发展规律,是重点研究的对象;循环变动由于周期长,可以看作是长期趋势的反映,一般和长期趋势统称为趋势-周期因素;随机不规则变动由于不容易测量,通常也不单独分析(注:“S”型增长曲线是持续增长的,随机波动是一种与某个特殊事件相关的短期波动,具有一定的概率,可作为决策的辅助依据);季节变动有时会让预测模型误判其为不规则变动,从而降低模型的预测精度。
当一个时间序列具有季节变动特征时,在预测之前会先将季节因素进行分解,也就是将季节变动因素从原时间序列中去除,并生成由剩余三种因素构成的序列来满足后续分析需求。
常用的时间序列分解方法有:传统时间序列分解法、X-12-ARIMA分解法、STL分解法。
时间序列的平稳性
平稳的基本思想是:时间序列的统计性质在时间平移中不变。在理论上,时间序列的平稳可以分为强平稳和弱平稳,实际的数据分析中时间序列的平稳多指弱平稳。
弱平稳的具体含义是:①均值函数是常数函数且②协方差函数仅与时间差相关。
从变量
从差分方程
差分方程的解
由微分方程或者差分方程的基本知识可以知道,有关
这里可以看出,时间序列的平稳性就是指时间序列的统计性质关于时间平移不变。
为什么要追求平稳性?因为我们研究时间序列很重要的一个应用(或者出发点),是希望通过时间序列的历史数据来得到其未来的一些预测。换句话说,我们希望时间序列在历史数据上的一些性质,在将来保持不变,这不就是时间平移的不变性么?反过来想,如果时间序列不是平稳的,由历史数据

本文介绍了ARIMA模型在MATLAB中的时间序列分析应用,包括数据可视化、平稳性处理、模型选择和预测。通过平稳性检验、差分处理、模型参数估计和残差检验,确保模型有效性,并进行预测。强调了时间序列的分解和季节性因素处理对建模的重要性。
最低0.47元/天 解锁文章
497

被折叠的 条评论
为什么被折叠?



