
Improving Face Recognition by Clustering Unlabeled Faces in the Wild

作者团队:马萨诸塞大学&NEC实验室等
论文: https:// arxiv.org/abs/2007.0699 5
据作者团队称:这是第一个解决聚类期间标记和未标记人脸数据之间identities重叠的实际问题的方法,该方法被称为:out-of-distribution detection。
大量实验表明,本方法相对于有监督的基准具有一致的改进,例如,对IJB-A验证的改进为11.6%。
尽管人脸识别技术已从大规模的标签数据中得到很好应用体现,但当前的研究重点是利用未标注的数据进一步提高性能,从而降低人工注释的成本。
先前的工作主要是在受控的环境中进行的,其中标记和未标记的数据集在构造上没有重叠的标识。在大规模的人脸识别中,这是不现实的,在大规模的人脸识别中,必须面对这样的重叠,重叠的频率随着数据量的增加而增加。

忽略identities重叠会导致明显的标记噪音,因为来自同一identities的数据会分成多个簇。为了解决这个问题,我们提出了一种基于极值理论的新颖identity分离方法。它被称为out-of-distribution检测算法,大大减少了重叠identities签噪声引起的问题。将群集分配视为伪标签,我们还必须克服群集错误带来的标签噪音。我们提出了余弦损失的调制,其中调制权重对应于聚类不确定性的估计。
创新点:



实验结果
在受控和真实环境下进行的大量实验表明,我们的方法相对于有监督的基准具有一致的改进,例如,对IJB-A验证的改进为11.6%。




下载
链接: https:// pan.baidu.com/s/1p9NROr B4MerCPoRLxPjk3w
提取码:j933
强烈推荐大家关注计算机视觉论文速递知乎专栏和CVer微信公众号,可以快速了解到最新优质的CV论文。
推荐阅读
Facebook发布FAIRScale:用于高性能和大规模训练的PyTorch工具
ECCV 2020 | 即插即用!PSConv:将特征金字塔压缩到紧凑的多尺度卷积层中
52.1 AP!MSRA&北大提出RepPoints V2:用于目标检测的验证+回归
CenterNet3D:用于自动驾驶的Anchor-free 3D目标检测器
华南理工大学提出AQD:面向准确的量化目标检测
MS-NAS:用于医学图像分割的多尺度神经网络架构搜索
京东AI提出:用于人脸识别的损失函数搜索
增强注意力!DCANet:学习卷积神经网络的连接注意力
RarePlanes:最大的真实/合成的飞机检测和分类数据集
GBDT与NAS强强联手!中科大&MSRA提出GBDT-NAS:使用GBDT进行神经网络架构搜索