msra数据集_ECCV 2020 | 通过聚类无标签数据来提高人脸识别能力

106379d0058953ce24983bf6933ba65a.png

Improving Face Recognition by Clustering Unlabeled Faces in the Wild

c8a8c51cf5afcd696b46865bc3f1eeeb.png
作者团队:马萨诸塞大学&NEC实验室等
论文: https:// arxiv.org/abs/2007.0699 5

据作者团队称:这是第一个解决聚类期间标记和未标记人脸数据之间identities重叠的实际问题的方法,该方法被称为:out-of-distribution detection

大量实验表明,本方法相对于有监督的基准具有一致的改进,例如,对IJB-A验证的改进为11.6%。

尽管人脸识别技术已从大规模的标签数据中得到很好应用体现,但当前的研究重点是利用未标注的数据进一步提高性能,从而降低人工注释的成本。

先前的工作主要是在受控的环境中进行的,其中标记和未标记的数据集在构造上没有重叠的标识。在大规模的人脸识别中,这是不现实的,在大规模的人脸识别中,必须面对这样的重叠,重叠的频率随着数据量的增加而增加。

965c0b5364a8a4d384073e677319dee5.png

忽略identities重叠会导致明显的标记噪音,因为来自同一identities的数据会分成多个簇。为了解决这个问题,我们提出了一种基于极值理论的新颖identity分离方法。它被称为out-of-distribution检测算法,大大减少了重叠identities签噪声引起的问题。将群集分配视为伪标签,我们还必须克服群集错误带来的标签噪音。我们提出了余弦损失的调制,其中调制权重对应于聚类不确定性的估计。

创新点:

e31278254f92cfcd30dcbbd53ec565bc.png

abba074a656debdb87ee6d33925890a1.png

8e1353b79eff6367cda1fad7b775578d.png

实验结果

在受控和真实环境下进行的大量实验表明,我们的方法相对于有监督的基准具有一致的改进,例如,对IJB-A验证的改进为11.6%。

3cb8a77852d4a452deac528a95620787.png

30288ab41cc85bc71ae0a569bed4b789.png

08bb518f19ef434993d276552ee46e9e.png

dc6249a9b781827575ea70fd3b82cf46.png

下载

链接: https:// pan.baidu.com/s/1p9NROr B4MerCPoRLxPjk3w
提取码:j933

强烈推荐大家关注计算机视觉论文速递知乎专栏和CVer微信公众号,可以快速了解到最新优质的CV论文。

推荐阅读

Facebook发布FAIRScale:用于高性能和大规模训练的PyTorch工具

ECCV 2020 | 即插即用!PSConv:将特征金字塔压缩到紧凑的多尺度卷积层中

52.1 AP!MSRA&北大提出RepPoints V2:用于目标检测的验证+回归

CenterNet3D:用于自动驾驶的Anchor-free 3D目标检测器

华南理工大学提出AQD:面向准确的量化目标检测

MS-NAS:用于医学图像分割的多尺度神经网络架构搜索

京东AI提出:用于人脸识别的损失函数搜索

增强注意力!DCANet:学习卷积神经网络的连接注意力

RarePlanes:最大的真实/合成的飞机检测和分类数据集

GBDT与NAS强强联手!中科大&MSRA提出GBDT-NAS:使用GBDT进行神经网络架构搜索

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值