二分类最优阈值确定_分类问题的评估指标一览

本文深入探讨了分类问题的评估指标,包括混淆矩阵、Accuracy、Precision、Recall、F1-Score、MCC、ROC曲线、AUC和P-R曲线。特别强调了在样本不均衡情况下的评估,并指出F1-Score和AUC在二分类问题中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c06ee2e404163ce3f4101e967790bd31.png

前言

最近分类问题搞的有点多,但对一些指标依旧有模糊的地方(虽然做了笔记), 事实证明, 笔记笔记,没有进到脑子里呀。 因此,我想着肯定有跟我一样半生半熟的小伙伴在分类指标这块依旧有迷惑,毕竟常用的几个大多数情况下就够用了, 这篇文章就主要讲一讲分类的评估指标。

几个定义:混淆矩阵

  • TP: True Positives, 表示实际为正例且被分类器判定为正例的样本数
  • FP: False Positives, 表示实际为负例且被分类器判定为正例的样本数
  • FN: False Negatives, 表示实际为正例但被分类器判定为负例的样本数
  • TN: True Negatives, 表示实际为负例且被分类器判定为负例的样本数

一个小技巧, 第一个字母表示划分正确与否, T 表示判定正确(判定正确), F表示判定错误(False); 第二个字母表示分类器判定结果, P表示判定为正例, N表示判定为负例。

几个常规的指标

Accuracy:

Accuracy 能够清晰的判断我们模型的表现,但有一个严重的缺陷: 在正负样本不均衡的情况下,占比大的类别往往会成为影响 Accuracy 的最主要因素,此时的 Accuracy 并不能很好的反映模型的整体情况。

Precision:

Recall:

Precision 与 Recall 的权衡

精确率高,意味着分类器要尽量在 “更有把握” 的情况下才将样本预测为正样本, 这意味着精确率能够很好的体现模型对于负样本的区分能力,精确率越高,则模型对负样本区分能力越强。

召回率高,意味着分类器尽可能将有可能为正样本的样本预测为正样本,这意味着召回率能够很好的体现模型对于正样本的区分能力,召回率越高,则模型对正样本的区分能力越强。

从上面的分析可以看出,精确率与召回率是此消彼长的关系࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值