小波奇异点检测C语言,matlab小波变换对奇异点的检测

41528d3028836879cd698677c3999917.gifmatlab小波变换对奇异点的检测

Matlab 小波变换对于奇异点的检测 1.信号的突变性 突变信号又称奇异信号,突变信号的突变点经常携带比较重要的信息,是信号的重要特 征之一。在数字信号处理和数字图像处理中具有非常重要的作用和地位,信号的突变性检 测是先对原信号在不同尺度上进行“磨光” ,再对磨光后信号的一阶或二阶倒数检测其极值 点或过零点。对信号进行磨光处理,主要是为了消除噪声而不是边缘。传统的信号突变检 测方法是基于傅立叶变换的,由某一函数的傅立叶变换趋近于零的快慢来推断该函数是否 具有突变性,但它只能反映信号的整体突变性,而对信号的局部突变则无法描述。这样我 们就引入小波变换算法。 2.信号的突变点的检测原理 设 h(t)是函数 f(t)和 g(t) 的卷积,即: ) ( ) ( ) ( t g t f t h   则根据傅立叶变换的性质有: ) ( ) ( )] ( ) ( [ )] ( [          g f j t g t f F j t h F = = ) ( )] ( [      g f j )] ( )[ (      g j f = )] ( [ )] ( [ )] ( [ )] ( [ t g F t f F t g F t f F    所以得到: ) ( ) ( ) ( ) ( ) ( t g t f t g t f t h     若将函数 f(t) 看作是信号,g(t)看作是滤波器,那么信号的导数与滤波器的卷积结果可 以看作是滤波器的导数与信号的卷积。例如,如果选 g(t)为高斯函数,则利用其导数可以 构造 Morlet 小波和 Maar 小波,因此,小波变换的突变点和极值点与信号 f(t)的突变点和极 值点具有对应关系,利用小波可以检测突变信号。具体过程如下: 设 是一个起平滑作用的低通平稳函数,且满足条件 ) (t      , 1 ) ( dt t  0 ) ( lim    t t  通常取 为高斯函数,即 ) (t  2 / 2 2 1 ) ( t e t     假设 是二次可导的,并且定义 ) (t  2 / ) 1 ( 2 2 1 ) ( ) ( t te dt t d t        2 / 2 2 2 ) 2 ( 2 ) 1 ( 2 1 ) ( ) ( t e t dt t d t        则函数 、 满足小波的容许条件: ) ( ) 1 ( t  ) ( ) 2 ( t  ,      0 ) ( ) 1 ( dt t       0 ) ( ) 2 ( dt t  因此可用做小波母函数。若记 ,则 表示 在尺度因子 s 下的伸缩。由于小波变换就是将原信 1 s t s s          ( ) s t  ) (t  号 同伸缩小波卷积得到的,为此以 为小波函数定义的卷积型小波变换 ) (t f ) ( ), ( ) 2 ( ) 1 ( t t   为: ) )( * ( ) ( * ) ( * ) ( ) 1 ( ) 1 ( t f dt d s t dt d s f t f t f w s s s s             ) )( * ( ) ( * ) ( * ) ( 2 2 2 2 2 2 ) 2 ( ) 2 ( t f dt d s t dt d s f t f t f w s s s s               由此可见,小波变化 分别是函数 在尺度 s 下由 平滑后再 ) ( ), ( ) 2 ( ) 1 ( t f w t f w s s ) (t f ) (t  取一阶、二阶导数。当 s 较小时,用 对 平滑的结果对 的突变位置影响不大; ) (t s  ) (t f ) (t f 当 s 较大时,则此平滑过程会将 的一些细小的突变削去,而只剩下大尺寸的突变。由 ) (t f 此我们可知,当小波函数可看作某一平滑函数的一阶导数时,信号小波变换模的局部极值 点对应信号的突变点(或边缘) 。当小波函数可看作某一平滑函数的二阶导数时,信号小波 变换模的过零点,也对应信号的突变点(或边缘) 。 这就是采用检测小波变换系数模的过零点和局部极值点可检测信号突变点(或边缘) 的原理。 Matlab 小波变换检测奇异点原始信号是含有奇异点的信号,为确定该奇异点的时间,采用 haar 小波进行连续小波变 换后,在对系数进行分析处理。 仿真程序如下: figure(1) plot(cuspamax) xlabel( 时间 );ylabel( 幅值 ); title( 频率突变信号 ); figure(2) [c,l]=wavedec(cuspamax,5, db6 ); cfd=zeros(5,1024); for k=1:5d=detcoef(c,l,k);d=d(ones(1,2^k),:);cfd(k,:)=wkeep(d(:) ,1024) end cfd=cfd(:); I=find(abs(cfd)

下载提示(请认真阅读)1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。

2.下载的文档,不会出现我们的网址水印。

下载文档到电脑,查找使用更方便

8 积分

还剩页未读,继续阅读 关 键 词:小波分析 奇异点检测 小波变换 奇异点的 MATLAB 的检测 小波变换的 奇异点 matlab的 检测分析 MATLAB的奇异 doc Matlab 奇异点的MATLAB matlab matlab的奇异

50bcf9764bbd4714f9fe0eb9e92f395a.gif  蚂蚁文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值