《计算机网络安全技术第三章》.pdf
第三章 对称密码技术
3 .1 密码学的基本概念
密码是一门古老的技术,它已有几千年的历史,自从人类
社会有了战争就出现了密码,但1949年以前的密码只是一种艺
术而不是科学,那时的密码专家常常凭直觉和经验来设计和分
析密码,而不是靠严格的理论证明。1949年,Shannon发表了题
为“保密系统的通信理论”一文,引起了密码学的一场革命。
在这篇文章中,他把密码分析与密码设计建立在严格的理论推
导基础之上,从而使密码学真正成为一门科学。
密码按目的来分,可分为密码编码学和密码分析学。密码分析学
的基本任务是研究如何破译加密的消息或者伪造消息;密码编码
学的基本目的就是要伪装消息,就是要对给定的有意义的数据进
行可逆的数学变换,将其变为表面上杂乱无章的数据,使得只有
合法的接收者才能恢复原来有意义的数据,而其余任何人都不能
恢复原来的数据。
变换前有意义的数据称为明文,所有可能的明文组成的集合称为
明文空间。变换后的数据称为密文,所有可能的密文组成的集合
称为密文空间。对明文数据进行可逆变换的过程称为加密过程,
其变换称为加密变换,加密由一个参数k 控制,这个参数称为加密
1
密钥。恢复明文的过程称为解密过程,其变换称为解密变换,它
由一个参数k 控制,这个参数称为解密密钥。
2
如果加密密钥k 与解密密钥k 是相同的 (或者从k 很容易推导出
1 2 1
k ),统称为k ,这种密码体制称为对称密码体制,这是传统的加
2
密体制。如果加密密钥k 与解密密钥k 不相同,则称为非对称密码
1 2
体制,非对称密码体制也就是公开密钥密码体制。
3 .2 保密系统的Shannon模型
1.保密系统的Shannon模型
图3.1是保密系统的Shannon模型,n元数组x n = (x ,x ,x ) 是
1 2 n
明文,n元数组yn = (y ,y ,y )是在公开信道上传送的密文,
1 2 n
也就说任何人都可得到这些密文,n元数组kn = (k ,k ,k )是
1 2 n
通过安全信道传送给接收者的密钥,敌方密码分析者无法获得该
密钥。加密器的任务就是对明文m施以加密变换得到密文c
c = Ek (m)
解密器的任务就是对所接受到的密文实行解密变换获得明文
’
m = D ( c ) =D ( E (m ))
k k k
由于加密变换、解密变换是依赖于密钥k 的一对可逆的数学变换,
因此
’
m = m
从而完成保密通信。
密码分析者
发送者 加密器EK 解密器DK 接收者
密钥源
图3.1 保密系统的Shannon模型
例3 .1 一次一密密码体制。
设明文是一串二进制数据:m = (0110010011)2 ,设k也是一串同
样长度的二进制数据:k = (0111001001)2 。在A ,B两方通信前,
A首先通过安全信道 (比如信使)把密钥送给B ,现在A要把明文
m通过公开信道送给B ,A先对m施行加密变换
c = E (m) = m k
k
= (0
本文详细介绍了密码学中的对称密码技术,包括密码学的基本概念、对称密码体制以及Shannon的保密系统模型。在Shannon模型中,加密器使用加密密钥对明文进行变换得到密文,而解密器则使用解密密钥恢复明文,确保通信的安全性。此外,还提到了一次一密密码体制作为示例。

971

被折叠的 条评论
为什么被折叠?



