计算机网络安全技术(第3版)pdf,《计算机网络安全技术第三章》.pdf

本文详细介绍了密码学中的对称密码技术,包括密码学的基本概念、对称密码体制以及Shannon的保密系统模型。在Shannon模型中,加密器使用加密密钥对明文进行变换得到密文,而解密器则使用解密密钥恢复明文,确保通信的安全性。此外,还提到了一次一密密码体制作为示例。
摘要由CSDN通过智能技术生成

《计算机网络安全技术第三章》.pdf

第三章 对称密码技术

3 .1 密码学的基本概念

密码是一门古老的技术,它已有几千年的历史,自从人类

社会有了战争就出现了密码,但1949年以前的密码只是一种艺

术而不是科学,那时的密码专家常常凭直觉和经验来设计和分

析密码,而不是靠严格的理论证明。1949年,Shannon发表了题

为“保密系统的通信理论”一文,引起了密码学的一场革命。

在这篇文章中,他把密码分析与密码设计建立在严格的理论推

导基础之上,从而使密码学真正成为一门科学。

密码按目的来分,可分为密码编码学和密码分析学。密码分析学

的基本任务是研究如何破译加密的消息或者伪造消息;密码编码

学的基本目的就是要伪装消息,就是要对给定的有意义的数据进

行可逆的数学变换,将其变为表面上杂乱无章的数据,使得只有

合法的接收者才能恢复原来有意义的数据,而其余任何人都不能

恢复原来的数据。

变换前有意义的数据称为明文,所有可能的明文组成的集合称为

明文空间。变换后的数据称为密文,所有可能的密文组成的集合

称为密文空间。对明文数据进行可逆变换的过程称为加密过程,

其变换称为加密变换,加密由一个参数k 控制,这个参数称为加密

1

密钥。恢复明文的过程称为解密过程,其变换称为解密变换,它

由一个参数k 控制,这个参数称为解密密钥。

2

如果加密密钥k 与解密密钥k 是相同的 (或者从k 很容易推导出

1 2 1

k ),统称为k ,这种密码体制称为对称密码体制,这是传统的加

2

密体制。如果加密密钥k 与解密密钥k 不相同,则称为非对称密码

1 2

体制,非对称密码体制也就是公开密钥密码体制。

3 .2 保密系统的Shannon模型

1.保密系统的Shannon模型

图3.1是保密系统的Shannon模型,n元数组x n = (x ,x ,x ) 是

1 2 n

明文,n元数组yn = (y ,y ,y )是在公开信道上传送的密文,

1 2 n

也就说任何人都可得到这些密文,n元数组kn = (k ,k ,k )是

1 2 n

通过安全信道传送给接收者的密钥,敌方密码分析者无法获得该

密钥。加密器的任务就是对明文m施以加密变换得到密文c

c = Ek (m)

解密器的任务就是对所接受到的密文实行解密变换获得明文

m = D ( c ) =D ( E (m ))

k k k

由于加密变换、解密变换是依赖于密钥k 的一对可逆的数学变换,

因此

m = m

从而完成保密通信。

密码分析者

发送者 加密器EK 解密器DK 接收者

密钥源

图3.1 保密系统的Shannon模型

例3 .1 一次一密密码体制。

设明文是一串二进制数据:m = (0110010011)2 ,设k也是一串同

样长度的二进制数据:k = (0111001001)2 。在A ,B两方通信前,

A首先通过安全信道 (比如信使)把密钥送给B ,现在A要把明文

m通过公开信道送给B ,A先对m施行加密变换

c = E (m) = m k

k

= (0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值