python贝塞尔插值公式_这一切都从指数函数开始(1)——欧拉公式

众所周知,指数函数是指形如

的函数,其中
。它常用于描述事物在没有限制时的自然增长。但是这只是指数函数的
冰山一角,俗话说得好:莫看江面平如镜,要看水底万丈深。除了以上的作用,我们还可以从指数函数本身导出相当多的结论,比如数字信号处理中著名的 Whittaker—Shannon插值公式。在本系列文章中,我会从指数函数一直推到插值公式。

根据微积分的知识,我们知道指数函数

的导数就是它本身,我们可以用e的定义来验证:

通过这个定义,我们对指数函数求导:

所以指数函数的任何阶导数都是它本身,即

其中n为整数。于是我们有了这样的梗:

b5acad8671b92f6d3a558d20d73b2d90.png
图片来自网络,侵删

根据麦克劳林展开的定义

以及指数函数的性质,我们可以得出
的展开式:

,我们可以得到下面的式子:

当我们继续列举的时候我们可以把式子的实部和虚部分开,得到:

一些记忆好的同学可以发现

的展开式的实部和虚部刚好是
,于是我们可以得到欧拉公式:

以上是第一种也是最常见的欧拉公式证明方法。这条式子不仅能用级数展开式验证,还能用微分方程推导。

现在我们设置初始值问题:

我们可以直接发现(1)式是一个可分离变量的一阶微分方程,于是:

。将结果带入(2)式我们可以轻松解得
。于是根据
Picard–Lindelöf theorem
是这个问题的唯一解。所以任何其它满足该方程组的解和
等价。

,可得

所以该解满足第一条等式,然后我们再看第二条:

所以我们发现

都是该问题的解,于是根据Picard–Lindelöf theorem,我们得出结论

以上是欧拉公式的两种证明方法,下面我们可以看看几个欧拉公式的常见用途:

1、简化积分的运算

比如求正弦函数的拉普拉斯变换(其中s>0):

用微积分里的知识,我们一般会通过多次分部积分法来求解。但是有了欧拉公式,我们不但避免了分部积分,还同时能算出余弦函数的拉普拉斯变换:

现在我们计算一下:

于是我们根据欧拉公式,可以得到:

2、复分析

复数之所以有应用,就是因为它可以用来描述旋转。有了欧拉公式,复数可以更直观地理解为旋转

09f9f2e097112a60216a0bbd1425f449.png
复数的指数形式

该系列的第一篇就此结束,敬请期待下一部《这一切都从指数函数开始(2)——傅立叶的级数和变换》

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页