signature=ec3e0fddca3a649f0450fa24af15c638,Modeling of time series arrays by multistep prediction or...

摘要:

An estimation theory is provided for the fitting of possibly incorrect, invertible, short-memory models to (short- or long-memory) time series or time series arrays by multistep prediction error minimization or Gaussian likelihood maximization. By array, we mean data y t( T),1 t T, that depend on the number of observations T, such as regression or other estimated-model residuals, or the outputs of time varying filters, for example seasonal adjustments. Our theory only requires the modeled array to have basic properties: for a.s. [i.p.] convergence of parameter estimates, the array's sample lagged second moments must converge a.s. [i.p.], and its end values y 1+ j( T) and y T j( T) must be of order less than T 1/2. Or an appropriately differenced version of the observed array must have these properties. In Findley et al. (Ann. Statist. 29 (2001) 815), broad classes of arrays were shown to have these properties. Even for the special case of autoregressive moving average models fit to stationary Gaussian time series data, our result on the convergence of parameter estimates minimizing p-step-ahead prediction error sums of squares is new.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值