a*算法的时间复杂度_算法的时间复杂度和性能分析

本文介绍了算法的时间复杂度和性能分析的重要性,通过一个数学问题展示不同算法的效率差异。讨论了算法的五大特性,并以a*算法为例,探讨了如何通过优化减少运行时间。同时,解释了时间复杂度的概念,使用大O记法进行表示,并提供了常见时间复杂度的折线图。最后,通过Python的timeit模块分析了几种生成列表方式的性能差异。
摘要由CSDN通过智能技术生成

算法的引入

我们举一个可能不太恰当的例子:如果将最终写好运行的程序比作战场,我们码农便是指挥作战的将军,而我们所写的代码便是士兵和武器。那么数据结构和算法是什么?答曰:兵法!我们可以不看兵法在战场上肉搏,如此,可能会胜利,可能会失败。即使胜利,可能也会付出巨大的代价。我们写程序亦然:没有看过数据结构和算法,有时面对问题可能会没有任何思路,不知如何下手去解决;大部分时间可能解决了问题,可是对程序运行的效率和开销没有意识,性能低下;有时会借助别人开发的利器暂时解决了问题,可是遇到性能瓶颈的时候,又不知该如何进行针对性的优化。如果我们常看兵法,便可做到胸有成竹,有时会事半功倍!同样,如果我们常看数据结构与算法,我们写程序时也能游刃有余、明察秋毫,遇到问题时亦能入木三分、迎刃而解。故,数据结构和算法是一名程序开发人员的必备基本功,不是一朝一夕就能练成绝世高手的。冰冻三尺非一日之寒,需要我们平时不断的主动去学习积累。

算法的概念:

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。算法是独立存在的一种解决问题的方法和思想。对于算法而言,实现的语言并不重要,重要的是思想。算法可以有不同的语言描述实现版本(如C描述、C++描述、Python描述等),我们现在是在用Python语言进行描述实现。

算法的五大特性:

  1. 输入: 算法具有0个或多个输入

  2. 输出: 算法至少有1个或多个输出

  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成

  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性

  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成 

我们先来看一道题吧:

如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合? 

读完这道题的你估计头脑里马上就有了思路,但是并不一定是效率最高的,所以怎么写一个运行时间更短的算法是我们所要研究的。

首先,我们先写一个大家都可能会想到的一个算法(穷举范围内a、b、c所有的值),并计算一下程序运行的时间,代码如下:

import time

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值