算法python实现_Relief算法python实现

本文介绍了如何使用Python实现Relief算法,该算法用于特征选择。首先定义Filter类,包括数据处理、计算距离等步骤。接着,通过计算特征权重并过滤,选取最终特征。文章还解释了为何使用Relief算法及其解决的维数灾难问题。
摘要由CSDN通过智能技术生成

文章目录

一、算法流程图

二、代码步骤

1.第一步:定义类和init方法

2.第二步:数据处理

3.第三步:通过计算距离,找出猜错近邻和猜对近邻

4.第四步:计算特征权重

5.第五步:根据权重过滤式选取特征

6.第六步:选取最终特征

7.第七步:定义主函数

三、为什么要写relief算法?以及解决什么问题?

算法流程

relief算法流程图.png

第一步:定义类和init方法

方便函数调用参数,只需要一次向类中导入参数即可,不用重复导入参数

class Filter:

def __init__(self, data_df, sample_rate, t, k):

"""

#

:param data_df: 数据框(字段为特征,行为样本)

:param sample_rate: 抽样比例

:param t: 统计量分量阈值

:param k: 选取的特征的个数

"""

self.__data = data_df

self.__feature = data_df.columns

self.__sample_num = int(round(len(data_df) * sample_rate))#round函数:四舍五入

self.__t = t

self.__k = k

第二步:数据处理

将读取到的数据特征值中离散型处理成连续型,比如色泽:青绿,属于离散型,密度:0.679,属于连续型。

def get_data(self):

new_data = pd.DataFrame()#建立一个空二维表

for one in self.__feature[:-1]:#遍历循环每个特征

col = self.__data[one]#读取全部样本中其中一个特征

# 判断读取到的特征是否全为数值类,如果字符串中全为数字 ,则不作改变写进新的二维表new_data里面,否则处理成数值类型写进二维表

if (str(list(col)[0]).split(".")[0]).isdigit() or str(list(col)[0]).isdigit()\

or (str(list(col)[0]).split('-')[-1]).split(".")[-1].isdigit():#isdigit函数:如果是字符串包含数字返回ture,否则返回false

new_data[one] = self.__data[one]

else:

keys = list(set(list(

以下是一种简单的Python实现Relief算法的方法: ```python import numpy as np class Relief: def __init__(self, data, labels, k=5): self.data = data self.labels = labels self.k = k self.weights = None def fit(self): n_samples, n_features = self.data.shape distances = np.zeros((n_samples, n_samples)) for i in range(n_samples): for j in range(i+1, n_samples): distances[i,j] = np.sum(np.abs(self.data[i,:] - self.data[j,:])) distances[j,i] = distances[i,j] self.weights = np.zeros(n_features) for i in range(n_samples): nearest_pos = np.argsort(distances[i,:])[:self.k+1] nearest_neg = np.argsort(-distances[i,:])[:self.k+1] nearest_pos = nearest_pos[nearest_pos!=i] nearest_neg = nearest_neg[nearest_neg!=i] for j in range(n_features): self.weights[j] += np.abs(self.data[i,j] - np.mean(self.data[nearest_pos,j])) -\ np.abs(self.data[i,j] - np.mean(self.data[nearest_neg,j])) self.weights /= n_samples ``` 在这个实现中,我们首先创建了一个Relief类,它接受数据和标签,并将k设置为默认值5。在fit()方法中,我们计算了每对样本之间的距离,并计算了每个特征的权重。对于每个样本i,我们找到了与它最近的k个正例和k个负例,并使用它们的平均值来计算特征的权重。最后,我们将所有样本的权重取平均值,并将其保存在self.weights中。 使用Relief算法时,我们可以调用fit()方法来计算特征权重。在计算出权重之后,我们可以使用它们来选择最重要的特征,或者使用它们来进行特征选择或降维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值