今天讲一个共顶点双等腰直角三角形的模型,这个模型中,因为等腰直角三角形的存在,很容易发现一对全等三角形。再把全等三角形与题目中的条件相结合,从而找到解题思路。
【例题】如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积。
(视频讲解在文章末尾)
分析:共顶点的两个等腰直角三角形可以形成一对全等三角形,在这个题目中△BCD≌△ACE。
根据全等三角形性质,结合题目中条件,AB=8,AD=6,因为6、8、10是我们熟悉的一组勾股数,猜想△BAD是直角三角形就可以得出BD=10,AE=BD=10。
AE和BD恰好是四边形ABED的对角线,要是他们两个互相垂直,面积不就直接能求出来了么?
接下来一起开始证明:
图中△BCD≌△ACE就不解释了吧∠CBD=∠CAE,∠ABD=∠DAE,BD=AE∠CAD=∠CBA=45°∵ ∠CAB=45°∴ ∠BAD=90°
根据勾股定理得,BD=10,
∴ AE=10
∠ABD+∠ADB=90°∠ABD=∠DAE,∠DAE+∠ADB=90°∴ ∠AFD=90°
AE⊥BD
四边形ABED的面积=AE×BD÷2=50
例题视频解析在这里:
知乎视频www.zhihu.com