css3 三角形_初中数学:共顶点等腰直角三角形模型例题讲解

今天讲一个共顶点双等腰直角三角形的模型,这个模型中,因为等腰直角三角形的存在,很容易发现一对全等三角形。再把全等三角形与题目中的条件相结合,从而找到解题思路。

【例题】如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积。

(视频讲解在文章末尾)

864b804b2b11bcb251b0f79694005884.png

分析:共顶点的两个等腰直角三角形可以形成一对全等三角形,在这个题目中△BCD≌△ACE。

根据全等三角形性质,结合题目中条件,AB=8,AD=6,因为6、8、10是我们熟悉的一组勾股数,猜想△BAD是直角三角形就可以得出BD=10,AE=BD=10。

AE和BD恰好是四边形ABED的对角线,要是他们两个互相垂直,面积不就直接能求出来了么?

接下来一起开始证明:

b4ebb61c50203c8b3ba4316e07295a03.png

图中△BCD≌△ACE就不解释了吧∠CBD=∠CAE,∠ABD=∠DAE,BD=AE∠CAD=∠CBA=45°∵ ∠CAB=45°∴ ∠BAD=90°

根据勾股定理得,BD=10,

∴ AE=10

∠ABD+∠ADB=90°∠ABD=∠DAE,∠DAE+∠ADB=90°∴ ∠AFD=90°

AE⊥BD

四边形ABED的面积=AE×BD÷2=50

例题视频解析在这里:

知乎视频​www.zhihu.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值