原标题:BGPLUS实地科研 |中科院|计算机科学、计算机工程:计算机算法与数值建模实训
课题名称
= 计算机算法与数值建模实训 =
项目背景
近年来,无论是海外留学还是国内硕士、博士申请,越来越多的高分成绩单,已经让标化成绩作为筛选标准的作用逐渐降低。而通过科研项目、研究计划、学术论文等软性材料则是能够近一步展示申请人学术科研潜质的有利证明。
一方面,在学生提供的申请材料中,当学生拥有与申请专业方向相关的科研经历和学术论文成果时,学生在筛选或面试中获得导师加分的几率将大大增加。
另一方面,通过与国内外名校教授的交流,我们发现“ 拥有丰富的科研经验甚至论文发表成果 ”这一点也是导师最为看重的,在申请前就有科研经历的学生会让导师省心不少,更容易受到导师的认可与青睐。
名校导师在线小组科研项目中,国内顶尖一流大学的导师将指导学生完成高含金量的课题研究,提升学生科研学术背景,锻炼科研能力,产出高水平的学术论文报告,增加学生申请的闪光点,帮助海外留学申请、国内考研保研的学生从众多申请者和“标化成绩”中脱颖而出。
项目介绍
人们获得的80%以上信息来自于眼睛看到的图像,因此光学成像与视觉图像处理一直以来都是科技和工业创新的最前沿领域之一。本项目从光学成像原理出发,通过对彩色数字图像获取方法的梳理,引导学生理解彩色相机插值计算的内涵和意义,并逐步熟悉与掌握各类经典彩色Demosaicing算法,利用计算软件实现1-2种算法的数字仿真。
通过本项目的学习研究,让学生了解到最先进的相关光学成像技术进展,理解并亲自实践探索,扩展学生的科学前沿视野,同时激发未来有志于从事光学、视觉、算法等领域研究的同学的专业兴趣与热情。
适合人群
●准备出国留学申请、或国内保研、考研的学生,包括:
做“出国+保研”双重准备的学生
需要学术科研背景提升的学生
想要获得标化成绩外“科研经历+学术论文”加分项的学生
●计算机科学、计算机工程、通信工程 方向及相关专业的学生,并有相关知识基础
导师介绍
= 李老师 副研究员 =
中国科学院副研究员,中国科学院大学硕士生导师。主要从事 光学成像与测量技术研究工作,目前承担国家自然科学基金项目、中科院重点项目等多项课题,并开展各类新型精密光学仪器研制与产业化。发表高水平论文20余篇,获得国家发明专利10余项。
项目大纲
● 第一节课主题:光学成像技术基础
光学成像技术的发展历程关键知识点
光学成像基本原理
光学成像系统组成
● 第二节课主题:图像处理技术基础
图像基本属性和特征
图像处理基础
彩色成像原理
● 第三节课主题:彩色图像复原算法
彩色图像插值Bilinear算法
彩色图像插值Cok算法
彩色图像插值H-L算法
● 第四节课主题:Matlab建模仿真基础
Matlab编程要点简介
基本图像处理算法与Matlab编程实现
彩色Bayer原始图像获取Matlab仿真
● 第五节课主题:彩色图像Demosaicing算法的Matlab实现
Bilinear算法仿真
Cok算法仿真
其它优化改进算法研讨
● 第六节课主题:优化改进算法方案研讨
H-L算法仿真答疑
改进算法研讨
科技报告写作要点与经验分享
● 第七节课主题:项目报告/论文展示与答辩
时间安排
方案A:7周项目科研+3周国内论文辅导
12课时主导师课+12课时助教课+2课时答辩+3课时论文辅导,共计29课时
方案B:7周项目科研+4周国外论文辅导
12课时主导师课+12课时助教课+2课时答辩+4课时论文辅导,共计30课时
开课时间:2021.2.6开课
项目收获
方案A收获:
●研究报告
●纸质版主导师签名推荐信1封
●结业证书
●国内国家级/省级普刊论文发表
方案B收获:
●研究报告
●纸质版主导师签名推荐信1封+网推8封
●结业证书
●国外EI/CPCI级别国际会议全文论文投递与发表指导(共同第一作者)返回搜狐,查看更多
责任编辑: