科技信息 1.前言 在传统的智能识别系统中,控制规则的获取完全按照设计者和操作人员的经验进行,在某些系统中,由于设计者和操作人员的局限性,智能识别系统的设计无法保证最优或次优的控制性能[1]。 而本文是基于人工神经网络的智能识别系统[2],着力从行为上模拟人的控制推理和决策过程的实用控制方法,运用模糊控制理论[3],将神经网络和模糊控制结合起来,提高人工神经网络的智能性。基于神经网络的人工智能模糊控制适用于难以建模的对象,而且最终控制形式简单、容易实现,控制效果取决于是否正确、全面和有效的将操作人员的控制经验总结为一系列的语言控制规则[4]。 2.BP 神经网络与 BP 算法 2.1 BP网络结构 BP 网络是一种多层前馈神经网络,包括输入层,隐层(中间层)和输出层,其中隐层可以是一层也可以是多层,一般而言,三层 BP 神经网络就可以解决大部分比较简单的问题。BP网络前后层之间实现全连接,每层神经元之间无连接。学习样本给了 BP网络后,各神经元响应输入,信号从输入层,经隐层(中间层) ,向输出层传播,根据减少预期输出与实际输出差距这一原则,从输出层,经过各中间层,最后回到输入层,逐层修正各个连接权值,这种算法被称为“误差逆传播算法”,简称 BP 算法,随着误差逆传播的不断进行,网络响应输入的正确率也不断上升。 基本的 BP网络结构如图 1 所示: 图 1 基本的 BP网络结构 2.2 BP算法 BP算法的基本框图如图 2 所示: 图 2 BP算法的基本框图 3.洗衣机的人工网络智能系统 3.1 人工神经网络的模糊控制的结构特征 人工神经网络的模糊控制器是由神经网络和模糊控制共同组成的混合系统,这种混合系统具备了这两种技术的优点。人工神经网络模糊控制结构一般有 3 种组合形式,如图 3 所示。 图 3 人工神经网络模糊控制结构的一般组合形 3.2 洗衣机的神经网络模糊控制器的设计 3.2.1 基本推理图 在设计洗衣机控制系统时,首先应该考虑其被控参量,一般来说主要为洗涤时间和水流强度;其次考虑影响这一输出参量的因子,主要是被洗涤物品的浑浊程度和浑浊性质。为了简单化,浑浊性质采用浑浊程度的变化率来表示。例如,在洗涤过程中,油污的浑浊度变化率小,泥污的浑浊度变化率大。因此,浑浊度及其变化率可以作为控制系统的输入参量,而洗涤时间和水流强度可作为控制量,即系统的输出。 而实际上,洗衣服过程中的这类输入与输出之间很难用一定的数学模型进行描述。系统运行过程中,具有较大的不确定性,控制过程在很大程度上依赖操作者的经验。这样一来,利用常规的办法进行控制难以奏效。但是,如果在洗衣机中引入模糊控制技术,利用专家知识进行控制决策,往往容易实现优化控制。根据模糊控制的基本原理,可以得出确定洗涤时间的推理框图,如图 4 所示。 图 4 确定洗涤时间的推理框图 3.2.2 本设计的洗衣机神经网络模糊控制 本设计采用洗衣机的神经网络模糊控制,把人工神经网络和模糊控制结合起来,利用离线训练好的网络,通过在线计算即可得到最佳输出。这种控制模式反应速度快,而且神经网络又具有自学能力和联想能力,对于未在训练中出现的样本,也可以通过联系记忆的功能,做出控制决策,表现非常灵活。以浑浊度和浑浊度变化率为输入参量来决定洗涤时间的控制器的框图如图 5 所示。浑浊度采用三层神经网络,网络结构如图 5 示。 图 5 洗衣机的神经网络控制器的框图其输入量{x1, x2,x3}为洗涤水的浑浊度及其变化率,输出量{y1,y2, y3}为洗涤时间。考虑到适当的控制性能的需要和程序的简化,定义输入量浑浊度的模
基于matlab的bp神经网络,基于MATLAB的BP神经网络的应用
最新推荐文章于 2024-08-14 10:35:52 发布