1. 导读
源于之前的一篇文章,盛夏计划: 助小白极简入坑数据分析, 这半个月多前,我吹下的牛,现在不睡觉也要把他撸完,你说对吧?。。
虽然是极简教程,但是也会拆成几篇文章, 为什么?
文章太长,担心你不认真看?..实际情况,我还没写完...
本篇主题: 参观数据分析的实际场景,可能比你认为的稍复杂点!
阅读对象: 想入坑数据分析的小白
阅读时长: 三站地铁
数据分析抽象三个点:
因为看到不少教程,分模块讲解,每个技能再细分,尽管确实有些讲得不错,但我再想有没有提升的空间, 或者说白了, 我再讲一遍是不是太没创意了?.. 想想都觉得没趣,怎么能有动力写??
考虑民工的身份,还是实在点,就只把技能融进实际工作场景中,不引(硅)经(谷)据(案)典(例), 不搞花哨无用的东西,就说活儿该怎么干!然后把用到的技能最后总结。再搭配我免费提供的云端数据练习环境,这样体验会不会更好?
好!唠叨开始!
2. 数据分析,麻烦再认识一遍
- 需求诞生记
干活儿,总要有个出发点, 有个方向才好用劲儿 工作中,这个方向, 从数量来说80%业务方会主动找你喝茶约谈, 20%会是自己探索,时间分配上可能两者比较相近,或者业务方的占用会偏多。
- 数据处理ing
数据分析或者数据挖掘,80%的时间都花在数据处理上了,单从时间成本上看,我们都必须一定加肯定要重视它。流畅的数据处理能力,会让你以后分析和挖掘的路走的更加顺畅,对数据的加工和处理从来不会成为你的绊脚石,想想就开心O(∩_∩)O~~
- 需求close
数据最终还是要回到需求的出发点,最好有落地,有下一步的to do list, 最差要满足业务方需要
下面细聊每一步,带你溜达下数据的地界,很有趣,也偶尔会让小白抓狂,但抓狂后就是进步,你同意吗?
2.1 了解需求
特别重要,这个是方向,如果跑偏了, 后面就全部白费。
知乎app盐会员付费率变低的原因?你只查的是付费用户数变少就想交差是不行的,想想为什么不行?
一般需求方都会比较明确自己的目的,虽然不一定能用数据语言清楚表达, 但是从业务角度会说明白要什么