resnet论文_薰风读论文:Deep Residual Learning 手把手带你理解ResNet

77b9eb21d4f92e49dc34e0bac9b75978.png
这是薰风读论文的第2篇投稿,除了论文本身更多的是对文章思路的梳理和个人的思考。欢迎讨论~也很好奇你是喜欢只讲论文,还是喜欢多写讨论?

一、引言:为什么会有ResNet? Why ResNet?

神经网络叠的越深,则学习出的效果就一定会越好吗?

答案无疑是否定的,人们发现当模型层数增加到某种程度,模型的效果将会不升反降。也就是说,深度模型发生了退化(degradation)情况。

那么,为什么会出现这种情况?

1. 过拟合? Overfitting?

首先印入脑海的就是Andrew Ng机器学习公开课[1]的过拟合问题

9b36749382f59e1c9daeb5143cb61089.png
Andrew Ng的课件截图

在这个多项式回归问题中,左边的模型是欠拟合(under fit)的此时有很高的偏差(high bias),中间的拟合比较成功,而右边则是典型的过拟合(overfit),此时由于模型过于复杂,导致了高方差(high variance)。

然而,很明显当前CNN面临的效果退化不是因为过拟合,因为过拟合的现象是"高方差,低偏差",即测试误差大而训练误差小。但实际上,深层CNN的训练误差和测试误差都很大。

328350f7b049a22eff2743a7251cab00.png
(a)欠拟合与过拟合 (b)模型退化

2. 梯度爆炸/消失? Gradient Exploding/Vanishing?

除此之外,最受人认可的原因就是“梯度爆炸/消失(弥散)”了。为了理解什么是梯度弥散,首先回顾一下反向传播的知识。

假设我们现在需要计算一个函数

,
,
在时的梯度,那么首先可以做出如下所示的计算图。

,
,
带入,其中,令
,一步步计算,很容易就能得出

这就是前向传播(计算图上部分绿色打印字体与蓝色手写字体),即:

24c90ca805fa4c56bd50949b676bfa81.png

前向传播是从输入一步步向前计算输出,而反向传播则是从输出反向一点点推出输入的梯度(计算图下红色的部分)。

e8ea4a878d6376475b42f2bcc5b681b5.png

42c33d01142b9f872ad779c5908707c0.png
原谅我字丑……

注:这里的反向传播假设输出端接受之前回传的梯度为1(也可以是输出对输出求导=1)

观察上述反向传播,不难发现,在输出端梯度的模值,经过回传扩大了3~4倍。

这是由于反向传播结果的数值大小不止取决于求导的式子,很大程度上也取决于输入的模值。当计算图每次输入的模值都大于1,那么经过很多层回传,梯度将不可避免地呈几何倍数增长(每次都变成3~4倍,重复上万次,想象一下310000有多大……),直到Nan。这就是梯度爆炸现象。

当然反过来,如果我们每个阶段输入的模恒小于1,那么梯度也将不可避免地呈几何倍数下降(比如每次都变成原来的三分之一,重复一万次就是3-10000),直到0。这就是梯度消失现象。值得一提的是,由于人为的参数设置,梯度更倾向于消失而不是爆炸。

由于至今神经网络都以反向传播为参数更新的基础,所以梯度消失问题听起来很有道理。然而,事实也并非如此,至少不止如此。

我们现在无论用Pytorch还是Tensorflow,都会自然而然地加上Bacth Normalization(简称BN),而BN的作用本质上也是控制每层输入的模值,因此梯度的爆炸/消失现象理应在很早就被解决了(至少解决了大半)。

不是过拟合,也不是梯度消失,这就很尴尬了……CNN没有遇到我们熟知的两个老大难问题,却还是随着模型的加深而导致效果退化。无需任何数学论证,我们都会觉得这不符合常理。等等,不符合常理……

3. 为什么模型退化不符合常理?

按理说,当我们堆叠一个模型时,理所当然的会认为效果会越堆越好。因为,假设一个比较浅的网络已经可以达到不错的效果,那么即使之后堆上去的网络什么也不做,模型的效果也不会变差

然而事实上,这却是问题所在。“什么都不做”恰好是当前神经网络最难做到的东西之一。

MobileNet V2的论文[2]也提到过类似的现象,由于非线性激活函数Relu的存在,每次输入到输出的过程都几乎是不可逆的(信息损失)。我们很难从输出反推回完整的输入。

6e5e920ad2015eb2a4450d7bac84c48d.png
Mobilenet v2是考虑的结果是去掉低维的Relu以保留信息

也许赋予神经网络无限可能性的“非线性”让神经网络模型走得太远,却也让它忘记了为什么出发(想想还挺哲学)。这也使得特征随着层层前向传播得到完整保留(什么也不做)的可能性都微乎其微。

用学术点的话说,这种神经网络丢失的“不忘初心”/“什么都不做”的品质叫做恒等映射(identity mapping)

因此,可以认为Residual Learning的初衷,其实是让模型的内部结构至少有恒等映射的能力。以保证在堆叠网络的过程中,网络至少不会因为继续堆叠而产生退化!

二、深度残差学习 Deep Residual Learning

1. 残差学习 Residual Learning

前面分析得出,如果深层网络后面的层都是是恒等映射,那么模型就可以转化为一个浅层网络。那现在的问题就是如何得到恒等映射了。

事实上,已有的神经网络很难拟合潜在的恒等映射函数H(x) = x。

但如果把网络设计为H(x) = F(x) + x,即直接把恒等映射作为网络的一部分。就可以把问题转化为学习一个残差函数F(x) = H(x) - x.

只要F(x)=0,就构成了一个恒等映射H(x) = x。 而且,拟合残差至少比拟合恒等映射容易得多。

于是,就有了论文[3]中的Residual block结构

5565416fefda4d91cb357c16a9695b2a.png
Residual Block的结构

图中右侧的曲线叫做跳接(shortcut connection),通过跳接在激活函数前,将上一层(或几层)之前的输出与本层计算的输出相加,将求和的结果输入到激活函数中做为本层的输出。

用数学语言描述,假设Residual Block的输入为

,则输出
等于:

b924646d1a34e260b2e74cc2eec936f7.png

其中

是我们学习的目标,即输出输入的残差
。以上图为例,残差部分是中间有一个Relu激活的双层权重,即:

f1154d566cb081237ebd83841870a225.png

其中

指代Relu,而
指代两层权重。

顺带一提,这里一个Block中必须至少含有两个层,否则就会出现很滑稽的情况:

7a73dd336be8292b52a4a4d29554268a.png

显然这样加了和没加差不多……

2.网络结构与维度问题

04151f34e7b981c4193fcaa1ce16bc36.png
ResNet结构示意图(左到右分别是VGG,没有残差的PlainNet,有残差的ResNet)

论文中原始的ResNet34与VGG的结构如上图所示,可以看到即使是当年号称“Very Deep”的VGG,和最基础的Resnet在深度上相比都是个弟弟。

可能有好奇心宝宝发现了,跳接的曲线中大部分是实现,但也有少部分虚线。这些虚线的代表这些Block前后的维度不一致,因为去掉残差结构的Plain网络还是参照了VGG经典的设计思路:每隔x层,空间上/2(下采样)但深度翻倍。

也就是说,维度不一致体现在两个层面

  • 空间上不一致
  • 深度上不一致

空间上不一致很简单,只需要在跳接的部分给输入x加上一个线性映射

,即:

5a13a13e2c4d768eccf343141709852a.png

而对于深度上的不一致,则有两种解决办法,一种是在跳接过程中加一个1*1的卷积层进行升维,另一种则是直接简单粗暴地补零。事实证明两种方法都行得通。

注:深度上和空间上维度的不一致是分开处理的,但很多人将两者混为一谈(包括目前某乎一些高赞文章),这导致了一些人在模型的实现上感到困惑(比如当年的我)。

3. torchvision中的官方实现

事实上论文中的ResNet并不是最常用的,我们可以在Torchvision的模型库中找到一些很不错的例子,这里拿Resnet18为例:

d14cf0d7fc5babc11b568220d75c5991.png

运行代码:

import torchvision
model = torchvision.models.resnet18(pretrained=False) #我们不下载预训练权重
print(model)

得到输出:

ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)

薰风说 Thinkings

上述的内容是我以自己的角度思考作者提出ResNet的心路历程,我比作者蔡很多,所以难免出现思考不全的地方。

ResNet是如此简洁高效,以至于模型提出后还有无数论文讨论“ResNet到底解决了什么问题(The Shattered Gradients Problem: If resnets are the answer, then what is the question?)”[4]

论文[4]认为,即使BN过后梯度的模稳定在了正常范围内,但梯度的相关性实际上是随着层数增加持续衰减的。而经过证明,ResNet可以有效减少这种相关性的衰减。

对于

层的网络来说,没有残差表示的Plain Net梯度相关性的衰减在
,而ResNet的衰减却只有
。这也验证了ResNet论文本身的观点,网络训练难度随着层数增长的速度不是线性,而至少是多项式等级的增长(如果该论文属实,则可能是指数级增长的)

而对于“梯度弥散”观点来说,在输出引入一个输入x的恒等映射,则梯度也会对应地引入一个常数1,这样的网络的确不容易出现梯度值异常,在某种意义上,起到了稳定梯度的作用。

除此之外,shortcut类似的方法也并不是第一次提出,之前就有“Highway Networks”。可以只管理解为,以往参数要得到梯度,需要快递员将梯度一层一层中转到参数手中(就像我取个快递,都显示要从“上海市”发往“闵行分拣中心”,闵大荒日常被踢出上海籍)。而跳接实际上给梯度开了一条“高速公路”(取快递可以直接用无人机空投到我手里了),效率自然大幅提高,不过这只是个比较想当然的理由。

76e9dc0baf1dd23913cbf963a78e974b.png

上面的理解很多论文都讲过,但我个人最喜欢下面两个理解。

第一个已经由Feature Pyramid Network[5]提出了,那就是跳连接相加可以实现不同分辨率特征的组合,因为浅层容易有高分辨率但是低级语义的特征,而深层的特征有高级语义,但分辨率就很低了。

第二个理解则是说,引入跳接实际上让模型自身有了更加“灵活”的结构,即在训练过程本身,模型可以选择在每一个部分是“更多进行卷积与非线性变换”还是“更多倾向于什么都不做”,抑或是将两者结合。模型在训练便可以自适应本身的结构,这听起来是多么酷的一件事啊!

有的人也许会纳闷,我们已经知道一个模型的来龙去脉了,那么在一个客观上已经十分优秀的模型,强加那么多主观的个人判断有意思吗?

然而笔者还是相信,更多角度的思考有助于我们发现现有模型的不足,以及值得改进的点。比如我最喜欢的两个理解就可以引申出这样的问题“虽然跳接可以结合不同分辨率,但ResNet显然没有充分利用这个优点,因为每个shortcut顶多跨越一种分辨率(大部分还不会发生跨越)”。

那么“如果用跳接组合更多分辨率的特征,模型的效果会不会更好?”这就是DenseNet回答我们的问题了。

参考文献

[1]https://www.coursera.org/learn/machine-learning
[2]Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[J]. 2018.

[3]He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. 2015.

[4]Balduzzi D , Frean M , Leary L , et al. The Shattered Gradients Problem: If resnets are the answer, then what is the question?[J]. 2017.

[5]Lin T Y , Dollár, Piotr, Girshick R , et al. Feature Pyramid Networks for Object Detection[J]. 2016.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值