熵相似_Matter:神经网络机器学习辅助开发高熵合金催化剂

c369d9860572a7bda1c6c508921f55c5.pngb61fccb8ea5adf42f023d2bc850b2acc.png

【研究背景】

高熵合金(High entropy alloy, HEA)是由多种元素组成的合金,其通常由5种或以上不同元素组成。作为普通合金向多金属方向的延伸,高熵合金是目前最新颖的材料体系之一,尤其在催化领域一系列的高熵合金通过高效合成被广泛用作异相催化剂。这些高熵合金催化剂在多种关键的化学反应中展示出非常高的催化活性,包括CO2RR、ORR、OER以及HER等。高熵合金的决定性优势在于它的可调控性-不同的金属可以以任意比例调配,从而大大提高催化设计的自由度。但是,自由度的提高带来了相应的难题:因为不同种类的催化位点变多,想逐个理解每一个位点会变得非常耗时,无论是用计算的方法(比如密度泛函理论)还是实验的方法。

更为重要的一点是,很多催化领域的核心概念很难在高熵合金得到拓展。催化剂晶体表面对活性的影响已经是催化界公认最重要因素之一,但目前对此因素的理解仅限于单金属和少数双金属催化剂体系。其主要难点是因为没有任何描述符可以同时描述不同的金属种类和不同的表面结构。除此之外,高熵合金极高的自由度导致它缺乏直觉性,成为了设计高熵合金的一个重要难题。

【文章简介】

为了捕捉高熵合金复杂的构效关系。近日,多伦多大学Chandra Veer Singh教授课题组利用IrPdPtRhRu高熵合金作为模型催化剂,对其表面位点的吸附能进行预测。并且利用密度泛函理论计算提供数据来训练神经网络(neural network, NN)模型,同时考虑不同元素的空间排列(ligand effect)和不同的晶体表面(coordination effect)对吸附能的影响。此NN模型具有三个优点:(1)高精度,平均绝对误差为0.09 eV;(2)高通用性,不仅适用于高熵合金还适用于其它单金属、双金属催化剂;(3)高精简度,模型仅有36个参数,并且以牺牲一部分精度为代价可以进一步简化为线性模型

利用训练好的NN模型,可以绕过DFT,直接使用NN模型预测不同位点的吸附能。由于NN模型比DFT计算快很多,而且不需要超级计算机,因此利用NN模型的方法可以快速预测出几万个不同位点的吸附能,从而形成一个吸附能的分布图以及对高熵合金更深度的理解。利用这些分布图,作者建立了不同元素和不同表面结构对吸附能的定量关系。在此基础上,把DFT数据和文献数据进行了对比,发现两者大致一致。因此该工作可以为设计HEA催化剂提供了有效的参考。本文第一作者为多伦多大学Zhuole Lu硕士及陈志文博士后

【文章详情】

作者以IrPdPtRhRu高熵合金作为出发点来研究高熵合金的催化性能。选用IrPdPtRhRu有以下原因:(1)这五个元素作为单金属材料已经被Norskov及很多学者很透彻地研究,所以可以作为很好的出发点;(2)这些金属在大多数反映条件下都很难被氧化,所以可以作为很好的实验比较对象。作者利用OH*作为吸附物(OH*是ORR反应以及其它催化反应的重要中间产物,根据火山图中的关系可以直接对应到ORR反应的过电位)。虽然只计算了OH*的吸附能,同样的方法应该可以适用于不同的吸附物和不同的化学反应。

这篇文章的工作流程主要分为以下几点:(1)采集数据;(2)设计描述符和NN模型、训练NN模型、比较模型精度;(3)利用训练好的模型预测未知位点的吸附能、生成分布图。

(1) 采集数据

数据库由DFT计算得到,包括IrPdPtRhRu的不同表面结构的不同位点上OH*的吸附能。首先生成五个不同表面的晶格结构,包括(111)、(100)、(110)、(211)和(532) (参见图1,注意在这里仅仅描述了结构,还没有分配不同的元素)。在每个表面上有对应的不同位点,(111)、(110)和(100)各有一个位点,(211)和(532)则有多个位点(在图1中以方括号标注)。在过去的文献中,这些不同的位点可以代表真实纳米颗粒上不同的位点结构,也就是说这里的数据库和真实的催化剂微观结构有着紧密的联系。接下来,作者给每个结构随即分配五种元素,使它们随机到不同的位置,从而模拟高熵合金(在这个过程中,元素的摩尔比例保持不变)。最后获得一千个左右的数据点。 

cb4faf6bcd03aa5ab5b4f6e5aec1258f.png

图1. HEA的表面及活性位点数据库用于模型训练和评估。

(2) 设计描述符和NN模型

接下来将产生的DFT数据输入到NN模型进行训练。如何让模型知道每个数据点对应的是什么样的结构?回答该问题就要涉及到新的描述符,这也是本工作的新颖点之一。作者采用元素性质(比如族)来标记每个原子对应的元素的种类,以及采用配位数(coordination number)来标记每个原子对应的周边结构。除此之外,有最后一个数字表示这个原子是否与OH*相邻(区分nearest neighbour)。这套简单的描述符体系便是工作的第一步(图2)。

接下来就涉及到NN模型的结构了。为了让模型精简,将同样的dense layer运用到每个原子上,然后将所得到的值求和来得到最后答案(而不是直接用dense layer得到最后的答案)。除了让模型精简,这种模型结构可以保证排列对称(permutational symmetry),因为任意调换原子的顺序不会对最后结果造成影响。这是一个很简单的模型结构,具体的细节可以参见文章以及Git-hub。此外,训练好的NN模型有很高的精度,作者对比了DFT算出的答案和NN模型预测的答案,发现两个基本一致。而且该模型可以精准预测没有见过的表面结构,以及可以预测单金属和双金属上的吸附能,有着很高的通用性。 

66d2d6d1970bd6d7146e88933c7a16a7.png

图2. 机器学习方案,示例输入特征及模型图。

(3) 利用训练好的模型预测未知位点的吸附能、生成分布图

NN模型的精确性能够直接对不同位点的吸附能进行预测。只需几秒钟,便可以预测出数万个随机生成的位点。作者统计了不同位点上的吸附能并生成了它们的分布图(图3,每个位点用X-Y的格式表示,X和Y代表OH*临近的两个原子的配位数,括号内是对应的密勒指数)。在同样的位点上,不同的吸附能来自于不同金属元素的分布。而在不同的位点上,不同的吸附能则是又两个因素导致:不同元素的分布以及不同的结构。有趣的是,不同位点上吸附能大致与位点上的金属原子的配位数和成正比,这意味着此前在单金属上发现的位点对吸附能的影响和高熵合金的是相似的,但具体影响的程度因金属种类而异。对于ORR而言,这意味着设计出凹形的位点(比如cavity site)对最终的活性有好处。然而,具体的吸附能数值(以及活性数值)则需要NN模型才能知道。总之,该工作为加速催化剂的设计献出了一份自己的力量。 

6238d775a177e179b16485f52f48bf81.png

图3. 配体和配位效应对吸附能的影响。

Zhuole Lu, Zhi Wen Chen, and Chandra Veer Singh. Neural Network-Assisted Development of High-Entropy Alloy Catalysts: Decoupling Ligand and Coordination Effects. Matter 2020, DOI:10.1016/j.matt.2020.07.029.

b6fbdbab0eb1610847fffef2ab81ac63.gif

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值