densenet网络结构_FC-DENSENET用于图像分割学习笔记

本文记录了使用FC-DenseNet进行图像分割的学习过程,该网络结合了下采样和上采样的特性,类似U-Net,但更深入且解决了梯度消失问题。尽管参数少,但能实现良好效果,且训练次数相对较少。
摘要由CSDN通过智能技术生成

近日使用FC Dense Net 做分割,记录学习使用过程。

FC-DenseNet 原文链接:https://arxiv.org/abs/1611.09326 《The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation

初次使用此网络,第一眼是被这个名字吸引的,Tiramisu 作为一个挚爱提拉米苏慕斯的小粉,第一次以一种与开发无关的心情好好读了篇学术论文。对,就是这么随意,虽然,其实根本无关~~~

网络结构:

----与U-NET看上去略像,包括粗略提取图像特征的下采样过程和恢复图像大小的上采样过程。

425edf0a7dd90d59be83c0d99d52c548.png
FC Dense Net 网络结构

----网络结构采用了残差网络的思想,深化了网络结构,也解决了较深的网络训练时容易产生的梯度弥散问题。对dense block模块进行了改进以减少内存消耗。(按照Resnet中的dense block,倒数第二个C模块的输出也要输入到最后一层C进行计算)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值