在全文搜索(Fulltext Search)中,词(Term)是一个搜索单元,表示文本中的一个词,标记(Token)表示在文本字段中出现的词,由词的文本、在原始文本中的开始和结束偏移量、以及数据类型等组成。ElasticSearch 把文档数据写到倒排索引(Inverted Index)的结构中,倒排索引建立词(Term)和文档之间的映射,索引中的数据是面向词,而不是面向文档的。分析器(Analyzer)的作用就是分析(Analyse),用于把传入Lucene的文档数据转化为倒排索引,把文本处理成可被搜索的词。
在ElasticSearch引擎中,分析器的任务是分析(Analyze)文本数据,分析是分词,规范化文本的意思,其工作流程是:
1. 首先,字符过滤器对分析(analyzed)文本进行过滤和处理,例如从原始文本中移除HTML标记,根据字符映射替换文本等,
2. 过滤之后的文本被分词器接收,分词器把文本分割成标记流,也就是一个接一个的标记,
3.然后,标记过滤器对标记流进行过滤处理,例如,移除停用词,把词转换成其词干形式,把词转换成其同义词等,
4.最终,过滤之后的标记流被存储在倒排索引中;
5. ElasticSearch引擎在收到用户的查询请求时,会使用分析器对查询条件进行分析,根据分析的结构,重新构造查询,以搜索倒排索引,完成全文搜索请求。
无论是内置的分析器(analyzer),还是自定义的分析器(analyzer),都由三种构件块组成的:character filters,tokenizers和 token filters。
character filters
字符过滤器以字符流的形式接收原始文本,并可以通过添加、删除或更改字符来转换该流。
举例来说,一个字符过滤器可以用来把阿拉伯数字(٠١٢٣٤٥٦٧٨٩)转成成Arabic-Latin的等价物(0123456789)。
一个分析器可能有0个或多个字符过滤器,它们按顺序应用。
Tokenizer (分词器)
一个分词器接收一个字符流,并将其拆分成单个token (通常是单个单词)&#x