定积分证明题例题_[实用技巧帖]—何如秒算分部积分?

0b57bb76c6422d3733a641f38a367245.png

这里是一则小广告:关注作者请点击这里哦:zdr0我的专栏里面不仅有学习笔记,也有一些科普文章,相信我的专栏不会让您失望哦~大家可以关注一下:数学及自然科学记得点赞加收藏哦~创作不易,请赞赏一下支持一下作者吧[期待]~文章中如果有错误的话还请各位大佬多多斧正,感谢!-尽力写最好的讲义,尽力写最好的科普推一下我的微信公众号,扫码即可关注哦!今后在知乎所发的文章都会同步到该公众号当中(本文将于2020.09.20左右同步到公众号):

3da73413ed8ec0dbac63d5ed284e80bc.png

最近看到了一种计算分布积分的十分简便的方法,俗称“微、积分”

。注意不是微积分哦。这方法看了第一遍我就爱了,实在是太简便了。废话不多说了,直接开始吧。

如果有朋友只想知道做法的话那么从式

看起即可,看完例题之后应该就掌握这个方法啦~

0. 引言

首先我们来回顾一下不定积分的分部积分:

分部积分法也有有效的帮助我们解决一些积分,但是苦于它的计算量(尤其是被积函数的表达式十分复杂的时候),使用分部积分法确实也比较浪费时间。

那我们不妨先来研究一下式

,看看能否发现什么端倪。为了方便讨论我们首先将式
写成最标准的形式:

此处

的选择按照
反、对、幂、三、指 的顺序,即排在前面的优先选择为
。显然,当被积函数比较复杂的时候一般是不能一次求出
的,比如一个典型的例子就是

如果无法一次性求出

,则接下来我们就继续设
,则:

将式

带回到式
可得:

如果仍不能求出

的话那就继续重复上述操作,即再设
,则:

进而:

现在我们就用最传统的方法计算一下

请计算不定积分:


根据
的选择规则,我们选择:

(设积分常数为零)

显然,我们并未一步解决这个积分,所以我们需要进一步设:

进而
,则:

我们还是没有求出结果,所以我们要继续设:

进而
,所以:

综上所述,我们的结果为:

并非一个特别复杂的例子,但是我们仍然发现其计算过程也是比较繁琐的。现在让我们回到式

在式

中我们发现,已经被积出的函数
前面的符号排列是
,并且每一个被积出的函数都是
的一个原函数与函数
的乘积。那么下面我们就来系统的分析一下这个规律。

1. 一般形式的分部积分公式[1]

现给定两个定义在开区间上的函数

。并记:

为函数

[2]
阶导数,并设:

[3]的原函数。

对于任意

我们有:


我们对
使用归纳法。

如果设
的话我们发现这就是我们的式
。所以
时的基本情况成立。

现在归纳的假设
的时候定理成立。即:

并且如果令
,我们还有:

下面我们来证明
时的情况:

如果

,则:

的结果可以直接通过一个表格进行呈现:

在表格

中,我们总共有三列:第一列我们称为
符号列,以
这样的顺序排列下去,
符号列是用于提示应该做加法还是应该做减法的。第二列列出了
以及直到它的
阶导数,
及其各阶导数所在的列我们称为
微分
列。
第三列列出了
及其各阶原函数,而
及其各阶原函数所在的列我们称为
积分
。使用记号
是为了与我们在分布积分中的使用的记号进行统一。然后,我们将
对应相乘,然后将乘积相加,但是 一定要注意符号!当加到到最后一个乘积时,即
时,还要再加上一个
,所以最后的结果是:

上述结论有几种不同的情况,下面我们就通过示例进行说明。

2. 示例

请计算不定积分:

首先根据

的选择方式,我们选择:

现在开始画表:

然后我们将

对应相乘,然后将乘积相加,最后再加上
,并注意符号:

请计算不定积分:

这个积分可以将

等价的替换为:

进行求解,这种方法同样不错,但依然无法避免最后取虚部时的复杂运算。所以我们还是使用表格法求解。现在我们先来选择

然后画表:

忽略系数,我们发现表格中的第三行与第一行重复了,此时我们就停在第三行就可以了。更一般的:在忽略系数的情况下,如果我们发现表格中的某两行重复了,则可在第一次重复时停止。停下来之后我们继续按照之前的方法求解可以了。即将

对应相乘,然后将乘积相加,最后再加上
,并注意符号:

然后我们移项可得:

即:

最后:

某些情况需要重复使用表格,比如:

请计算不定积分:

同样我们先来选择

现在我们来画表:

再继续画表是没有意义的,因为只会让积分越来越复杂,并且我们不知道应该在哪里终止表格。所以,这里我们就按照之前的步骤继续就可以了。即将

对应相乘,然后将乘积相加,最后再加上
,并注意符号:

现在我们还是要来求解

。则我们再选择:

则表格为:

这张表同样没有必要再画下去了,因为

的导数会越来越复杂。所以,这里我们就按照之前的步骤继续就可以了即将
对应相乘,然后将乘积相加,最后再加上
,并注意符号:

所以:

最后,我们再使用表格法算算最开始的那个例子:

首先,我们还是先选择

现在我们来画表:

现在我们将

对应相乘,然后将乘积相加,最后再加上
,并注意符号:

显然,结果与一开始的结果一致。最后留两个练习,各位读者朋友可以自行演算一番。

请计算不定积分:

请计算定积分:


参考

  1. ^The Tabular Method for Repeated Integration by Parts http://ramanujan.math.trinity.edu/rdaileda/teach/s18/m3357/parts.pdf
  2. ^我们假设 f 充分光滑,可以在 I 上对其进行任意次微分。
  3. ^为此,我们只需要假设 g 在 I 上是连续的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值