mtcnn人脸检测python_基于MTCNN/TensorFlow实现人脸检测

人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等。对于opencv的人脸检测方法,有点是简单,快速;存在的问题是人脸检测效果不好。正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测。因此,该方法不适合现场应用。对于dlib人脸检测方法 ,效果好于opencv的方法,但是检测力度也难以达到现场应用标准。

MTCNN是基于深度学习的人脸检测方法,对自然环境中光线,角度和人脸表情变化更具有鲁棒性,人脸检测效果更好;同时,内存消耗不大,可以实现实时人脸检测。

代码如下:

from scipy import misc

import tensorflow as tf

import detect_face

import cv2

import matplotlib.pyplot as plt

%pylab inline

minsize = 20 # minimum size of face

threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold

factor = 0.709 # scale factor

gpu_memory_fraction=1.0

print('Creating networks and loading parameters')

with tf.Graph().as_default():

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))

with sess.as_default():

pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

image_path = '/home/cqh/faceData/multi_face/multi_face3.jpg'

img = misc.imread(image_path)

bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)

nrof_faces = bounding_boxes.shape[0]#人脸数目

print('找到人脸数目为:{}'.format(nrof_faces))

print(bounding_boxes)

crop_faces=[]

for face_position in bounding_boxes:

face_position=face_position.astype(int)

print(face_position[0:4])

cv2.rectangle(img, (face_position[0], face_position[1]), (face_position[2], face_position[3]), (0, 255, 0), 2)

crop=img[face_position[1]:face_position[3],

face_position[0]:face_position[2],]

crop = cv2.resize(crop, (96, 96), interpolation=cv2.INTER_CUBIC )

print(crop.shape)

crop_faces.append(crop)

plt.imshow(crop)

plt.show()

plt.imshow(img)

plt.show()

实验效果如下:

再上一组效果图:

关于MTCNN,更多资料可以点击链接

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: 基于MTCNN/TensorFlow实现人脸检测

本文地址: http://www.cppcns.com/jiaoben/python/228858.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值