简单典型二阶系统_MIT—微分方程与线性代数笔记2.1 二阶常微分方程

67b4271d621a9052f671568d8d3a7cf9.png

§2.1 二阶常微分方程

2.1 Second Order Equations

微分方程

MIT公开课《微分方程和线性代数》 2.1 二阶微分方程​v.youku.com
c93fcf27f13eaa42a8412669f45ae53b.png

二阶常微分方程的应用特别广泛,因为它包含了加速度项,即速度的导数——二阶导数

。在图像上,二阶导数体现函数曲线的弯曲程度,因为它是斜率的变化率。二阶微分方程的典型方程式为

我们最初的讨论限制在A,B,C三个参数均为常数的情况下,并且在这一讲只求解二阶常微分方程的“零解”,即等式右侧为0的齐次方程的解。当参数均为常数时,解函数的形式均为指数函数。零解有两个,通常写成

的形式,其中的两个参数
c1和 c2需要两个初值条件才能确定。在一阶常微分方程中我们通常有初值条件
,而二阶微分方程中有加速度项,因此通常需要速度项
作为初值条件。

:在物理和工程中最常见的运动方程——简谐振动的方程,其形式为

,其中因为没有阻尼项,所以没有一阶导数项。这个方程描述的就是弹簧的简谐振动或者钟摆的运动。

如果假定mk都是1,则方程变为二阶导数y''等于负的原函数

,立刻就会想到是正弦或者余弦函数。如果
mk为实值,则二阶导数和原函数之间还差着参数 k/m,因此该二阶微分方程的零解之一为
,根号是因为求导两次才会出现
k/m。而其零解完全表达式为两零解之和:

通常将

改写为
,其中
n代表自然频率,则方程变为
,而方程的解变为

可以看出零解中的参数需要带入初值条件加以确认,例如代入t=0,则零解的第二项消失,第一项只剩下参数,因此有

,同理可得
。因此有

绘制一下余弦函数的函数曲线来增加一下对它的认识:

dbc5230f9eecbbcd9892dc1bfafb16f9.png

的周期是
是角速度,单位是弧度每秒。
f是频率,单位是赫兹,满足
。因此有

零解还有另一种虚指数的表达方式

。方程对应的是纯简谐振动,因此表达式中的指数也是纯虚数。

§2.1b 受迫简谐振动

Forced Harmonic Motion

微分方程

优酷视频​v.youku.com

本讲仍然介绍常系数二阶微分方程,但是与上一讲自由状态的简谐振动不同,这次等式右侧不再是0,将引入外力作用构造这一简谐振动的运动状态或者说推进这种运动。

输入余弦函数

微分方程

。此时,解函数中必然包含两种频率信息:

外力频率 ω

自然频率

这两者的匹配状态决定着运动的状态,在实际应用中甚至决定桥梁是否会因为两频率相等

导致共振状态而发生倒塌。

方程中只有二次导数和函数本身,因此容易想见特解的形式为

,这个解函数也称之为受迫响应。将特解代入方程,可得:

方程的通解为特解和上一讲所求的零解进行线性组合。

改写特解的形式可得

。从中可以看到共振或者外力的频率接近自然频率时,对函数的影响非常巨大。我们将因子
称为频率响应。

输入Delta函数

,外力作用只发生在最初的一瞬间,即在0时刻给系统——例如单摆或者弹簧一个外力冲击,这一瞬间给了系统一定的速度,但是还没有发生位移,该方程的解函数
g( t)称为脉冲响应。

求解脉冲响应的方法是将之视为一个齐次方程

,但是方程的初值因为脉冲发生了改变,位移不变
,但是速度发生变化
。按照上一讲求“零解”的方法,将初值条件代入,可得到此方程的解为
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值