r语言取绝对值最大的数不带绝对值_数分笔记——非常初等的Fejér-Jackson不等式...

1c27a83d7af1f000a21fe44b0127c0fb.png

【注:待更一些更强的结论】

参考书:梅加强《数学分析》. 下面文章也可以参考:

https://link.springer.com/chapter/10.1007/978-94-017-1043-5_21​link.springer.com

38d5ce45046750ef94029b4ac7b7e09a.png
题目:若数列
单调收敛于0, 则函数项级数
中一致收敛.

证明:根据Dirichlet判别法, 我们只需要证明级数

一致有界. QED

所以问题的关键在于,怎么证级数

一致有界?关于这个问题可以引伸出一个更有意思的问题:它由Fejér于1910年猜想, 且由Fejér,Jackson,Gronwall等人首先证明:
定理1 [Fejér-Jackson不等式]
则必有

证明:(Turan, 1952) 先证明一个推广的引理

引理2 若对任意正整数n都有
不全为零, 则对该n满足

证明:注意到

于是

由条件, 当

时有
则对于
不全为0时, 有

所以

QED

回到原命题, 这里

由于

其中

则根据引理可知
QED

注:在百度贴吧找到一个更好的结果(未验证正确性):

命题3 对任意
都有
http://tieba.baidu.com/p/1770844577​tieba.baidu.com
定理4[一致有界性]
则存在与
无关的常数
使得

Motivation: 回顾不等式

以及

注意

在t比较小的范围内是比较“好”的, 而当t比较大的时候直接用三角函数有界性即可放缩. 所以当t比较大的时候, 可以考虑采用Abel变换以及三角级数的求和.

证明:由三角函数的周期性, 只需要考虑

区间. 又由
是奇函数, 故只需要考虑
区间(另一半区间相当于取相反数). 【下面的证明在@博雅 的提醒下作了修改.】

(1)若

根据不等式

(2)若

取正整数
满足
把级数拆成两个部分:

根据前一定理, 我们在这里不需要加绝对值.

由不等式

回顾Abel求和, 设

根据

以及前一定理可得

注意当

时有
所以

综上,

这里正整数m是待定的(与x有关), 取

则上界
可以取为
QED

【原回答】

把级数拆成两个部分: (m待定)

如果

则第一部分为0, 如果
则第二部分为0. 根据
定理1, 我们在这里不需要加绝对值.

(1)根据不等式

(2)回顾Abel求和, 设

根据

可得

这里还需要处理

注意当
时有
所以

综上,

这里正整数m是待定的(与x有关), 取

则上界
可以取为
QED

【原回答over】


注:稍微修改某一步, 可以把上界

变小为

注:

时有
这个不等式非常实用,例如:
(1)(用围道积分)计算Fresnel积分

(2)(用留数定理)计算

(3)证明

更多估计:

定理5

证明:

或者
(这里
为平凡的情况). 即
由于

函数

在区间
单调递减, 且
另外当
所以

同理可得

因此

下面设

所以数列

单调递增, 且有上界(前面已经证明了有
为上界), 因此极限存在.

(对

的验证是同理的)

因此

QED
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值