weixin_39795364
码龄8年
关注
提问 私信
  • 博客:25,004
    25,004
    总访问量
  • 2
    原创
  • 1,013,885
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:日本
  • 加入CSDN时间: 2017-08-10
博客简介:

weixin_39795364的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得2次评论
  • 获得85次收藏
创作历程
  • 2篇
    2018年
TA的专栏
  • 机器学习
    2篇
  • Spark
    2篇
  • sparse
    1篇
  • 稀疏向量
    1篇
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Spark 机器学习总结(一)

一、密集和稀疏向量一个向量(1.0,0.0,3.0)它有两种表示的方法:密集向量(dence):[1.0,0.0,3.0]    其和一般的数组无异;稀疏向量(sparse):(3,[0,2],[1.0,3.0])     其表示的含义(向量大小,序号,值)   序号从0开始。        参考:1. https://yq.aliyun.com...
原创
发布博客 2018.10.18 ·
300 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

特征重要度整理 - 随机森林、逻辑回归

一、 随机森林输出特征重要度       用随机森林进行特征重要性评估的思想其实很简单,通俗来讲就是看每个特征在随机森林中的每颗树上做了多大的贡献,取平均值,然后比较特征之间的贡献大小。      常见的计算方法有两种,一种是平均不纯度的减少(mean decrease impurity),常用gini /entropy /information gain测量,现在sklearn中用的就是...
原创
发布博客 2018.10.07 ·
24682 阅读 ·
11 点赞 ·
1 评论 ·
97 收藏