python幂运算是左结合还是右结合_从“位运算”炫技到“操作符”,再到逐步理解“群论”...

df86fef17b696f238403c06c73b59c16.png

,再到逐步理解

是否曾经会有过很努力,还是看不懂别人代码的苦恼?

有时是算法思路堵塞,有时是作者“故意”用了一些奇形怪状的位运算来炫技!

比如交换两个变量,不借助第三者的异或运算^;判断奇偶数用 &运算;置位用左移<<、右移>>运算等等。

这些代码常见于嵌入式编程(考虑效率),或编程比丑大赛(Hacker)之中。

为什么一般看不懂呢?

因为通常我们脑中并没有很好理解它的意义,而习惯上加、减、乘、除("+-*/")的意义好像都已印入脑中!

但仔细一想,这些"&,|,^,<<,>>,~,"与“加减乘除”其实都一样,没什么区别的,它们都是操作符(Operator) 啊!

操作符绑定两个数,再安一些规则在其中,就形成了!

听不懂?,那么倒要真的问一下自己,是否真的懂了加减乘除啦?(据说博士毕业之前最好都要搞懂)

下面将举一些具体的位操作运算例子,以辅助大家对各操作符

的理解。

然后结合

上升到
的抽象!

最后再到群论的入门介绍

希望大家领略了群论的风景之后,再回来看自己曾经学过的各个计算机语言(C,C++,C#,Java,Python,Javascript...虽然很多我都不熟 ),会有too simple, too young的感慨?~

位操作介绍

位操作主要有与、或、非和异或,下面将介绍各种位操作的基本用法。

0 & 1 = 0

1 & 0 = 0

0 & 0 = 0

1 & 1 = 1

0 | 1 = 1

1 | 0 = 1

0 | 0 = 0

1 | 1 = 1

!0 = 1

!1 = 0

异或

1 ^ 0 = 1

0 ^ 1 = 1

0 ^ 0 = 0

1 ^ 1 = 0

位操作符两别的数a和b只有两个数0和1,加减乘除两边的操作数a和b可以是所有实数(除法b不能为0),这是它们的最大区别,再无其它!

要把运算映射到人可以理解的意义,第一步要把二进制数映到实数(整数),再结合效果map到人习惯理解的意义!

1.判断一个数的奇偶性(不用%2操作)

n = 3
# if n is even, will be true, else false
def f(n):
    return n & 1 == 0

f(n)

False
f(4)

True

2.判断一个数是否为2的整数幂

def f(n):
    return n & (n-1) == 0

f(4)

True

3.不用临时变量交换两个数

def swap(a,b):
    a ^= b
    b ^= a
    a ^= b
    return a,b

x,y = 3,4
swap(x,y)

(4, 3)

4.找到数组中出现奇数次的元素:

一个非空数组,只有一个元素出现奇数次,其余出现偶数次,找出那个元素:

arr = [1,2,1,2,4,3,3]
res = 0
for i in arr:
    res ^= i

res
#  任何一个数字异或它自己都等于0。也就是说,如果我们从头到尾依次异或数组中的每一个数字,
#  那么最终的结果刚好是那个只出现奇数次的数字,因为那些出现偶数次的数字全部在异或中抵消掉了。

4

5.求两个整数的平均值(结果有小数点时抛弃小数点)

def f(a,b):
    return (a+b)>>1

f(5,6)

5

6.取两个数的最大值(某些机器上,效率比a>b ? a:b高)

def f(a, b):
    return b & ((a-b) >> 31) | a & (~(a-b) >> 31)

f(8,22)

22

7.取两个数的最小值(某些机器上,效率比a>b ? b:a高)

def f(a,b):
    return a & ((a-b) >> 31) | b & (~(a-b) >> 31)

f(3,4)

3

8.判断两个数符号是否相同(0算正号)

def f(x,y):
    return (x ^ y) >= 0

f(3,4)

True

9.计算2的n次方

def f(n):
    return 2<<(n-1)

f(3)

8

10.从低位到高位,取某数的第m位

def f(n,m):
    return (n >> (m-1))&1

f(8,4)

1

11.从低位到高位,将某数的第m位置1

def f(n,m):
    return n | (1 <<(m-1))

f(8,2)

10

12.取相反数 (注意~是

目运算符)
def f(n):
    return ~n+1

f(-5)

5

13.判断两个数是否相等

def f(x1,x2):
    return (x1 ^ x2) == 0

f(3,4)

False

14.对n加1,++

def f(n):
    return -~n

f(3)

4

15.对n减1,--

def f(n):
    return ~-n

f(4)

3

16.取绝对值

def f(n):
    return (n ^ (n >> 31)) - (n >> 31)

f(-9)

9

我们总结一下:

  • 任何数和 0 进行 OR 都为自身:x | 0 = x。
  • 任何数和 -1 进行 OR 都为 -1:x | -1 = -1。
  • 任何数和 0 进行 XOR 都为自身:x ^ 0 = x。
  • 任何数和 -1 进行 XOR 都为 ~x:x ^ -1 = ~x。
  • 任何数和其自身进行 XOR 都为0:x ^ x = 0。
  • 对任何数 x 进行 NOT 操作的结果为 -(x + 1),~x = -(x+1)。
  • <<(左移)该操作数会将第一个操作数向左移动指定的位数。向左被移出的位被丢弃,右侧用0补充。

在位数没溢出的情况下,左移一位,可视为乘2操作,左移n位相当于

以2的n次方
  • >>(
    符号右移)该操作数会将第一个操作数向右移动指定的位数。向右被移出的位被丢弃,左侧用0补充,最左侧
    用原符号位填充。

在位数没溢出的情况下,右移一位,可视为除2操作,右移n位相当于

以2的n次方

所有符号都只是一个代表某种意义的操作符,而已!它和“加减乘除”是完全一样的!

进而我们是不是可以把这种操作符进一步抽象?把它和集合中的元素绑定在一起就形成了群论!

群(group)的基本定义:

群是一个集合G 加上一个操作符运算"#",它结合任何两个元素a和b而形成另一个元素,记为a#b。

要成为群,这个集合和操作运算(G,#)必须满足叫做群公理(group axioms)的四个要求:

  • (1)封闭性(closure):对于所有G中a,b,运算a#b的结果也在G中。
  • (2)结合性(Associativity):对于所有G中的a,b和c,等式 (a#b)#c=a#(b#c)成立。
  • (3)单位元(Identity element):G中存在一个元素e,对于所有G中的元素a,等式 e#a = a#e = a 成立。
  • (4)逆元(Inverse element):对于每个G中的a,存在G中的一个元素b使得 a#b=b#a=e。

注意:

  • (1)"#"可以是带有任何有意义的操作符,有一些不一定满足交换律,即a#b!=b#a,比如矩阵运算。
  • (2)单位元和逆元是唯一的。
  • (3)然后群还有 阿贝尔群,循环群,半群,幺半群,子群,群同态,群同构,陪集,商群等概念,数学家总结的一些定理精彩致极!
  • (4)你可能会感受到到5次方程的根无解问题原来如此简单
  • (5)你可能会看费马小定理变得如此显然,不就是1+1=2一样自然的吗?

希望各位鉴赏完后,再来看前面的位运算操作炫技,是否只是雕虫小技? ......

cf6c8b2fe308413df70f470e2469aa09.png

         文章同步微信公众号:数学之水,欢迎关注指导

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值